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Abstract

We study how the simply typed terms of the bang calculus can be translated into the proof nets
of intuitionistic multiplicative and exponential linear logic (IMELL). We study the fragment of IMELL
for the simply typed bang calculus by providing a sequentialization theorem characterizing all and only
the proof nets corresponding to bang terms. We also show that cut-elimination simulates reduction,
and that our translation factorizes the call-by-name and call-by-value translations of the simply typed
lambda-calculus into IMELL passing through the simply typed bang calculus.

1 Introduction

Linear logic (LL), introduced by Girard in [4], is a refinement of classical and intuitionistic logic in which for-
mulas are treated as resources: the structural rules of contraction and weakening are restricted to certain for-
mulas, marked with modal operators, and the semantic equivalence induced by the models of LL is non-trivial.
One of the main contributions of LL to the field of proof theory is the formalism of proof-nets: freed from the
redundancy of sequent calculus concerning the order of the rules, it is a canonical notion of proof for multiplica-
tive linear logic without the units, and allows cut elimination to be defined through local manipulations on a
graph rather than global transformations on proof trees. It is therefore adequate to study the dynamics of nor-
malization and to establish the most fundamental properties of the system, such as strong normalization (every
reduction sequence is finite). The intuitionistic multiplicative exponential fragment IMELL of LL is expressive
enough to contain minimal intuitionistic logic, and hence the A-calculus, via two different translations defined
by Girard [4], corresponding to different evaluation mechanisms, call-by-name [10, 7] and call-by-value [1].

In [2], a typed calculus was introduced to make a connection between LL and call-by-push-value [8, 9], a
generalization of both call-by-name (cbn) and call-by-value (cbv) A-calculi. A simplified version of this formal-
ism is later developed in [3, 5] and dubbed “bang calculus” (bc), which captures both the cbn and cbv seman-
tics of A-calculus by internalizing Girard’s translations in the calculus. The bc is essentially an extension of A\-
calculus with an explicit ! constructor, which corresponds to the box construct of proof-nets and allows us to
control precisely the evaluation strategy by distinguishing between functions and values.

We define a fragment | IMELL of IMELL containing the be (simply typed according to Definition 2.2) and,
in particular, the two Girard’s translations (Proposition 2.5). We translate the bc into proof-nets of [IMELL
satisfying simple geometric properties (Definitions 4.1 and 4.2) in such a way that Girard’s cbn and cbv trans-
lations of A-calculus into proof-nets can be factorized as the cbn and cbv embeddings of A-calculus into bc, fol-
lowed by the translation of bc into proof-nets (Remark 4.4). A sequentialization theorem holds for both the
logical fragment (Theorem 3.7) and the be (Theorem 4.6). Finally, the dynamics of be is simulated by the cut
elimination procedure modulo conversion of proof-structures (Definition 3.3 and Theorem 4.5).
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2 IMELL and the simply typed bang calculus

The formulas of intuitionistic multiplicative exponential linear logic (IMELL) can be defined by the following
grammar, given a countably infinite set of atomic formulas denoted by X, Y, Z, .. .:

O0:=X|00|0BI|IBO|0 (output) I:=X"|IRI|I®0|0RI|?I (input)
The fragment |IMELL of IMELL is given by the grammar:
O:==X|?2IB0 |10 (output) Ts=X 10®1|?1 (input)

Weset O — O’ := O+ % O, where the involutive negation A of a (input or output) formula A is defined by de
Morgan’s laws (A @ B)* = A+ % B+ (1A)+ = ?7A+ and A++ = A. Note that the negation of an input formula
of IMELL (resp. IMELL) is an output formula of [ IMELL (resp. IMELL) and vice-versa.

The IMELL sequent calculus is the one-sided LL sequent calculus restricted to sequents of IMFELL formu-
las. It is easy to check that every provable sequent of IMFELL formulas contains exactly one output formula.

Definition 2.1. Bang terms are defined by the grammar t == x | Azt | (t)t | ', where 2 denotes any variable.
We define der t := (Az x)t. We obtain a rewriting system called bang calculus (bc) by defining the root rewriting
step (\zt)s' ++y, t{s/z} and by extending it in the usual inductive way to a reduction step —,.

The (Curry-style) simply typed bang calculus endows bang terms with output formulas of '\IMELL according
to the rules defined below. The intuition for is that terms in be are either functions (10 — O’) or values (10).

Definition 2.2. Typing derivations of bang terms (where I' = 1 : 101, ...,z : O for some k > 0):
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Definition 2.3. The translations ()" and (-)¥ of A-terms into bc are defined by induction on A-terms:
2" =z Az M)" = Xz M" (M)N)" == (M")(N")'
= AzM)¥ == Az M)’ ((M)N)Y :== (der MV)N"

Simple types are defined by the grammar 7' := « | T = T The translations (-)N and (-)V of simple types into
IMELL are defined by induction on simple types:

xXN=X (T = SN ==11N — SN XVi=X (T = S)V =TV —-18Y

A simple (resp. bang) context is a finite partial function from variables to simple types (resp. IMELL formulas).
WewriteI' = 21 : Ay,..., 2, : A, when the domain of the context I is dom(T") = {1, ..., 2, } and ['(a;) = A;
foreveryi € {1,...,n}. fT' =z, : T}, ...,z : T} is a simple context, the bang contexts x : ITN, ... z : !T,i\'
and xy 1TV, ... oy !T,:( are denoted by IT'N and TV respectively.

Remark 2.4. For every simple type T, the formulas TN and TV are output in IMELL.

Proposition 2.5. Let M be a \-term. IfT'+ M : T, then TN = M™ : TN and TV + MY : 1TV
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Figure 1: The local constraints that a node labeled by ¢ has to respect.
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Figure 2: Conversion steps are defined locally, by erasing nodes, moving them across box borders, and re-routing arcs.

3 Proof-nets for IMELL

Definition 3.1. A ground structure is a finite acyclic directed graph where its arcs are labeled by IMFELL for-
mulas (called types), its vertices (or nodes) are labeled by exactly one symbol between ax, cut, ®, %, !, 7d, 7,
e, and such that every node satisfies the local constraints illustrated in Figure 1.

Let G be a ground structure and let n be a node of G. A premise (resp. conclusion) of n is an arc incoming
(resp. outgoing) n. If n is a cut node, then n is an aziom cut if at least one premise of n is the conclusion of an
ax node, a multiplicative cut if its premises are conclusions of a ® node and of a % node. The premises of the e
nodes of G are called the conclusions of G. A node of G is terminal if all its conclusions are conclusions of G.

Definition 3.2. An IMELL proof-structure is a ground structure without ! nodes. An IMELL 4.1 proof-structure
is a ground structure R together with a function f that associates a IMFELL, proof-structure with conclusions
of type 711, ..., 71, O with every ! node n of R with conclusions of type 711, ..., 71, O. We write R’ ©— R when
R’ = f(n) for some ! node n of R. The unfolding of R, denoted by | R, is the graph obtained from R by replacing
every ! node n of R with conclusions of type 711, ..., ?I;,!O with | f(n)| where a unary ! node has been added
under its unique output conclusion. A(n IMELL) proof-structure is a IMELLg proof-structure for some d > 0.

Intuitively, the function f associates with each ! node the content of its box. We often leave f implicit.
The set of proof-structures is endowed with two reduction relations: cut elimination steps, which are the
usual ones for multiplicative exponential linear logic, and the conversion steps given by the following definition.

Definition 3.3. Conversion steps on proof-structures are defined in Figure 2. For all proof-structures R and
R’, we write R — R’ (resp. R —+ R') if R reduces to R’ in exactly one cut elimination (resp. conversion) step.
The smallest equivalence relation containing — is called conversion and is denoted by ~.

Proof-structures corresponding to correct proofs can be discerned via the notion of switching, as we will see.

Definition 3.4. A switching of a proof-structure R is a function ¢ mapping every % or 7 node with at least two
premises to one of its premises. The switching graph of R induced by ¢, denoted by R?, is the graph obtained
from R by replacing the target of the arc a by a fresh e node, for every premise a of a %% or ? node n such that
o(n) # a. We say that R is a proof-net if R has exactly one output conclusion, the underlying undirected graph
of R¥ is acyclic and every R’ C R is a proof-net.
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Figure 3: The proof-structures R1, R2 and R in the hypotheses of Lemma 3.6.
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Figure 4: A proof-net of | MELL which is not sequentializable in ! MELL and has a multiplicative cut.

Cut elimination is confluent and, when restricted to axiom and multiplicative steps, strongly normalizing.
Every sequent calculus proof 7 in IMFELL with conclusion the sequent I, ..., I, O can be desequantialized,
that is, translated into a proof-structure 7* with conclusions of type I1, ..., I, O. What about the converse?

Definition 3.5. Let F be a fragment of IMELL. A proof-structure R of F is sequentializable in F if there exists
a sequent calculus proof 7 in F such that R = «*.

The key result allowing us to prove our sequentialization results is the following lemma.

Lemma 3.6. Let Ry, Ry and R be the proof-structures depicted in Figure 3. If Ry and Ry are sequentializable in
IMELL, and if the last rule of every sequent calculus proof w in IMELL such that R = ©* corresponds ton or to
a terminal node of Ry (resp. Ry ), then the last rule of any sequent calculus proof wy in IMELL such that Ry = 7}
(resp. Ro = m) corresponds to my (resp. ma).

Theorem 3.7 (Sequentialization in IMELL without multiplicative cuts). Let R be a IMEL Lproof-structure
such that |R| has no multiplicative cuts: R is a proof-net if and only if R is sequentializable in IMELL.
Remark 3.8. The previous result cannot be extended to all proof-nets of IMELL (see the example in Figure 4).

We stress that Theorem 3.7 is an original contribution, different from the characterization via Lamarche’s
essential nets [6], which relies on a notion of jump, while we do not. The trade-off is that we must assume the ab-
sence of multiplicative cuts and this hypothesis is essential, as Remark 3.8 shows even for the fragment | IMELL.

4 Translations

We can now translate typing derivations of bang terms into proof-structures via two translations, and charac-
terize among the proof-structures the ones that correspond to typing derivations of bang terms.

Definition 4.1. A proof-structure R is a bang proof-structure if it is labeled by ! IMFELL formulas, and every in-
put premise of a % or e node of R is the conclusion of a ?d or ? node and every R’ C R is a bang proof-structure.
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Figure 5: The translation 7° of a typing derivation w of I F ¢ : O, defined by induction on 7.

A bang proof-structure is a bang proof-net if it is also a proof-net. A bang proof-structure R is named if it comes
with a function v which associates a variable with each ?d or ? node of | R|, in such a way that, for every ? node
n whose premises are conclusions of nq, ..., ng, we have v(n) = v(n;) for alli € {1,...,k}.

Definition 4.2. Let ¢t be a bang term and let 7 be a typing derivation of I' - ¢ : O. We define the named bang
proof-structure w° of lIMFELL by induction on 7, as depicted in Figure 5. We define 7* as the named bang proof-
structure of |IMELL obtained from 7° by normalizing the axiom and multiplicative cut elimination steps.
Remark 4.3. The named bang proof-structures 7° and 7*® of | MELL are actually named bang proof-nets.

Remark 4.4. The translations of cbn [10, 7] and cbv [1] A-calculi into proof-nets can be factorized as the cbn
and cbv embeddings of A-calculus into bc, followed by the translation of bc into named bang proof-nets.

Every reduction step in bc is simulated by a finite number of cut elimination steps, modulo conversion.

Theorem 4.5 (Simulation). Lett and s be bang terms and let m and 75 be typing derivations of T -t : O and of
I'F s : O respectively. Ift —y s, there exist bang proof-nets Ry, Rs such that my ~¢ Ry, mo ~» Rg and Ry —* R;.

Finally, named bang proof-nets with no axiom or multiplicative cuts are always translations of bang terms.

Theorem 4.6 (Sequentialization). Let R be a named bang proof-net with conclusions cg, ¢1, . . . ¢, where ¢y has
an output type O and, for alli € {1,...,k}, the conclusion ¢; has an input type ?OiL and is labeled by the variable



x;. If |R| has no axiom cuts and no multiplicative cuts, then there exist a bang termt and a typing derivation 7 of
x1:101,..., 2, : 10 Et: O such that ® = R.
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