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Introduced by Girard in [3], proof nets are a graphical syntax for linear logic
that represent proofs directly, abstracting away from inessential syntactic infor-
mation found in sequent calculus derivations. In the sequent calculus, the order
of rule applications must be fixed even when rules operate on independent parts
of a sequent. This constraint introduces unnecessary redundancy, commonly
referred to as bureaucracy [3], which complicates proof transformations such as
cut elimination, where rules need to be permuted to expose redexes.

For MLL, proof nets support polynomial-time correctness, sequentialization,
and translation [3]. However, when units are added to MLL, the standard cor-
rectness criterion fails [7], requiring substantial revision of the framework.

For propositional MALL, several syntaxes have been developed. Box nets,
introduced by Girard [3], handle the additive conjunction & using explicit boxes,
allow for polynomial-time correctness and translation but are not canonical with
respect to permutations involving &, not even locally. Monomial nets for MALL
[6], aim for more abstraction but still lack a polynomial correctness criterion and
do not improve over box nets in terms of generality [11]. To address these issues,
slice nets for MALL were proposed by Hughes and Van Glabbeek [13, 14]. Slice
nets identify derivations modulo all independent rule permutations (see Fig-
ure 2), including non-local ones, while keeping a polynomial-time correctness
checking. However, they do not have polynomial-time translation, as a single
slice net can correspond to an exponentially large set of derivations. This com-
plexity arises especially from permutations between rules like ⊗ and &, which
can require duplication of entire subproofs. Conflict nets for MALL, introduced
by Hughes and Heijltjes [11, 10], address this by restricting attention to lo-
cal permutations only. Conflict nets structure axiom links using multiplicative
concordance and additive conflict, and support polynomial-time correctness,
translation, and sequentialization. This comes at the cost of excluding some
non-local permutations.

In the first-order setting, similar design challenges appear. Girard introduced
witness nets for first-order MLL1 [4, 5], where quantifier witnesses are included
explicitly in the proof. This leads to non-canonical derivations: logically equiv-
alent proofs can differ depending on the witness chosen. Moreover, cut elimi-
nation in this setting becomes exponential and requires non-local rewriting [9].
To overcome these limitations, unification nets were introduced by Hughes for
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The sequent Γ

∃𝑡. 𝑃(𝑦, 𝑎, 𝑡) , ∃𝑧. 𝑃⊥ (𝑦, 𝑧, 𝑏) ⊗
(
𝑄⊥ (𝑐) ⊕

(
𝑄⊥ (𝑣) ` ∃𝑘. 𝑅⊥ (𝑥, 𝑘)

))
,

(
∃𝑤. 𝑄(𝑤) &

(
𝑄(𝑣) ⊗ 𝑅(𝑥, 𝑑)

))𝛼

𝜁

𝛽

𝛾

with


𝛿𝛼 = [𝑎/𝑧, 𝑏/𝑡]
𝛿𝛽 = [𝑐/𝑤]
𝛿𝛾 = [𝑑/𝑘]
𝛿𝜁 = ∅

Sequent calculus derivation D

ax
𝑃(𝑦, 𝑎, 𝑏), 𝑃⊥ (𝑦, 𝑎, 𝑏)

∃
∃𝑡.𝑃(𝑦, 𝑎, 𝑡), ∃𝑧.𝑃⊥ (𝑦, 𝑧, 𝑏)

ax
𝑄⊥ (𝑐), 𝑄(𝑐)

∃
𝑄⊥ (𝑐), ∃𝑤.𝑄(𝑤)

⊕ ©­«
𝑄⊥ (𝑐)

⊕
𝑄⊥ (𝑣) ` ∃𝑘.𝑅⊥ (𝑥, 𝑘)

ª®¬ , ∃𝑤. 𝑄(𝑤)

⊗

∃𝑡.𝑃(𝑦, 𝑎, 𝑡), ∃𝑧.𝑃⊥ (𝑦, 𝑧, 𝑏) ⊗ ©­«
𝑄⊥ (𝑐)

⊕
𝑄⊥ (𝑣) ` ∃𝑘.𝑅⊥ (𝑥, 𝑘)

ª®¬ , ∃𝑤. 𝑄(𝑤)

ax
𝑃(𝑦, 𝑎, 𝑏), 𝑃⊥ (𝑦, 𝑎, 𝑏)

∃
∃𝑡.𝑃(𝑦, 𝑎, 𝑡), ∃𝑧.𝑃⊥ (𝑦, 𝑧, 𝑏)

ax
𝑄⊥ (𝑣), 𝑄(𝑣)

ax
𝑅⊥ (𝑥, 𝑑), 𝑅(𝑥, 𝑑)

∃
∃𝑘.𝑅⊥ (𝑥, 𝑘), 𝑅(𝑥, 𝑑)

⊗
𝑄⊥ (𝑣), ∃𝑘.𝑅⊥ (𝑥, 𝑘), 𝑄(𝑣) ⊗ 𝑅(𝑥, 𝑑)`
𝑄⊥ (𝑣) ` ∃𝑘.𝑅⊥ (𝑥, 𝑘), 𝑄(𝑣) ⊗ 𝑅(𝑥, 𝑑)

⊕ ©­«
𝑄⊥ (𝑐)

⊕
𝑄⊥ (𝑣) ` ∃𝑘.𝑅⊥ (𝑥, 𝑘)

ª®¬ , 𝑄(𝑣) ⊗ 𝑅(𝑥, 𝑑)

⊗

∃𝑡.𝑃(𝑦, 𝑎, 𝑡), ∃𝑧.𝑃⊥ (𝑦, 𝑧, 𝑏) ⊗ ©­«
𝑄⊥ (𝑐)

⊕
𝑄⊥ (𝑣) ` ∃𝑘.𝑅⊥ (𝑥, 𝑘)

ª®¬ , 𝑄(𝑣) ⊗ 𝑅(𝑥, 𝑑)

&

∃𝑡.𝑃(𝑦, 𝑎, 𝑡), ∃𝑧.𝑃⊥ (𝑦, 𝑧, 𝑏) ⊗ ©­«
𝑄⊥ (𝑐)

⊕
𝑄⊥ (𝑣) ` ∃𝑘.𝑅⊥ (𝑥, 𝑘)

ª®¬ ,
©­­«

∃𝑤. 𝑄(𝑤)
&

𝑄(𝑣) ⊗ 𝑅(𝑥, 𝑑)

ª®®¬
Conflict Net {{D}}co Slice Net {{D}}sl

𝛼

𝛾 𝜁

𝛽 ⌢

#

⌢

{{
𝛼, 𝛽

}
,
{
𝛼, 𝛾, 𝜁

} }

Figure 1: The sequent Γ, where we marked links and dualizers, a derivation
for Γ, and the corresponding conflict and slice nets.

first-order MLL1 [9]. These proof nets abstract away witness terms and identify
derivations that differ only by quantifier instantiations, following the principle
of generality [15]. The methodology of unification nets have since been extended
to first-order ALL1 [8] and classical logic [12].

To our knowledge, no existing framework defines proof nets that handle both
additives and quantifiers in first-order (MALL1). This work fills that gap.

Conflict nets and slice nets for MALL1 To extend the definitions of conflict
nets and slice nets to first-order MALL1, we enrich the axiom links with witness
information for quantifiers, represented in the form of substitution maps, called
dualizers.

Definition 1. A link 𝛼 on a sequent ⊢ Γ is a sub-sequent of ⊢ Γ, that is, a
sequent ⊢ Γ′ such that Γ′ is an induced sub-forest of the forest of Γ. A link is
axiomatic if it is a sub-sequent made of a single occurrence of a pair of dual
atoms. An axiomatic linking on ⊢ Γ is a set of links (resp. axiomatic links)
on ⊢ Γ.

An axiomatic linking with witnesses ⟨Λ, 𝛿Λ⟩ on ⊢ Γ is a set of axiomatic
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Local rule permutations

⊢ Γ1,Δ1

⊢ Γ2,Δ2,Δ3 ⊢ Γ3,Δ4
⊗

⊢ Γ2, Γ3,Δ2,Θ2
⊗

⊢ Γ1, Γ2, Γ3,Θ1,Θ2

≈
⊢ Γ1,Δ1 ⊢ Γ2,Δ2,Δ3

⊗
⊢ Γ1, Γ2,Θ1,Δ2 ⊢ Γ3,Δ4

⊗
⊢ Γ1, Γ2, Γ3,Θ1,Θ2

⊢ Γ,Δ1,Δ2
𝛼1 ⊢ Γ,Θ1,Δ2
𝛼2 ⊢ Γ,Θ1,Θ2

≈
⊢ Γ,Δ1,Δ2

𝛼2 ⊢ Γ,Δ1,Θ2
𝛼1 ⊢ Γ,Θ1,Θ2

⊢ Γ1,Δ1,Δ2 ⊢ Γ2,Δ3
⊗

⊢ Γ1, Γ2,Δ1,Θ2
𝛼

⊢ Γ1, Γ2,Θ1,Θ2

≈
⊢ Γ1,Δ1,Δ2

𝛼

⊢ Γ,Θ1,Δ2 ⊢ Γ2,Δ3
⊗

⊢ Γ1, Γ2,Θ1,Θ2

⊢ Γ, 𝐴, 𝐶 ⊢ Γ, 𝐴, 𝐷
&

⊢ Γ, 𝐴, 𝐶 & 𝐷

⊢ Γ, 𝐵, 𝐶 ⊢ Γ, 𝐵, 𝐷
&

⊢ Γ, 𝐵, 𝐶 & 𝐷
&

⊢ Γ, 𝐴 & 𝐵,𝐶 & 𝐷

≈
⊢ Γ, 𝐵, 𝐶 ⊢ Γ, 𝐴, 𝐶

&
⊢ Γ, 𝐴 & 𝐵,𝐶,

⊢ Γ, 𝐵, 𝐷 ⊢ Γ, 𝐴, 𝐷
&

⊢ Γ, 𝐴 & 𝐵, 𝐷,
&

⊢ Γ, 𝐴 & 𝐵,𝐶 & 𝐷

⊢ Γ, 𝐵,Δ ⊢ Γ, 𝐴,Δ
&

⊢ Γ, 𝐴 & 𝐵,Δ
𝛼

⊢ Γ, 𝐴 & 𝐵,Θ

≈
⊢ Γ, 𝐴,Δ

𝛼

⊢ Γ, 𝐴,Θ

⊢ Γ, 𝐵,Δ
𝛼

⊢ Γ, 𝐵,Θ
&

⊢ Γ, 𝐴 & 𝐵,Θ

Non-local rule permutations

D
⊢ Γ1

⊢ Γ2, 𝐶 ⊢ Γ2, 𝐷
&

⊢ Γ2, 𝐶 & 𝐷
⊗

⊢ Γ, 𝐶 & 𝐷

≃

D
⊢ Γ1 ⊢ Γ2, 𝐶

⊗
⊢ Γ, 𝐶,

D
⊢ Γ1 ⊢ Γ2, 𝐷

⊗
⊢ Γ, 𝐷,

&
⊢ Γ, 𝐶 & 𝐷

𝛼, 𝛼1, 𝛼2 ∈ {`, ⊕, ∃,∀}

Figure 2: Rule permutations in MALL1.

links on ⊢ Γ provided with a witness map 𝛿Λ associating to each link 𝛼 ∈ Λ

a (possibly empty) dualizer 𝛿𝛼, that is, a substitution with domain variables
occurring bound by an existential quantifier (∃).

Conflict nets for MALL1 are trees alternating concord (⌢) and conflict (#)
nodes, having the elements of an axiomatic linking with witnesses as leaves, and
satisfying a correctness criterion called coalescence. Slice nets for MALL1 are
sets of axiomatic linkings satisfying a correctness criterion called erasing steps.
We denote by {{D}}co (resp. {{D}}sl) the conflict net (resp. slice net) encoding
a derivation D in MALL1. Details on the criteria1 criterion and the translations
from derivations to proof nets can be found in [1].

We define the following notions of proof equivalence for derivations in MALL1.

Definition 2. We call the variable introduced during the proof search by a quan-
tifier rule the active variable of that (occurrence of) rule. The active vari-
able of an existential (resp. universal) quantifier may also be called its witness
(resp. eigenvariable). Two derivations D1 and D2 in MALL1 are equivalent
modulo:

• active variables renaming (denoted D1 ∼w D2) if it is possible to trans-
form D1 into D2 by changing the active variables of the quantifier rules

1Both criteria are a form of contractibiity, whose intuition is similar to the one of Danos’[2]
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(and propagating the changes upwards in the derivation);

• rule permutations (denoted D1 ≃ D2) if it is possible to transform D1

into D2 using all transformations in Figure 2;

• local rule permutations (denoted D1 ≈ D2) if it is possible to transform
D1 into D2 using only the local rule permutations in Figure 2.

Moreover, we write D1 ≃w D2 (resp. D1 ≈w D2) if they are equivalent modulo
rule permutations (resp. local rule permutations) and active variables renaming,
that is, if there are derivations D′

1 and D′′
2 such that D1 ∼w D′

1 ≃ D′
2 ∼w D2

(resp. D1 ∼w D′
1 ≈ D′

2 ∼w D2).

Remark 1. In Equation (1) we show two existential quantifier rules select two
distinct witnesses 𝑥 and 𝑧, but the pair of atoms linked by an axiom rule is the
same.

ax
⊢ ⟨𝑥!𝑎⟩, (𝑥?𝑎)

∃
⊢ ∃𝑥.⟨𝑥!𝑎⟩, ∃𝑦.(𝑦?𝑎)

∼w

ax
⊢ 𝑃(𝑦, 𝑎, 𝑡), (𝑦?𝑎)

∃
⊢ ∃𝑥.⟨𝑥!𝑎⟩, ∃𝑦.(𝑦?𝑎)

(1)

We could argue that these two derivations should be not identified because the
choice of the witness is part of the information of the proof. In a boarder sense,
it may be useful to not identify a proof using a very elementary witness with
a proof using a quite complex one. Note that the two sub-derivations of the
∼w-equivalent derivations in Equation (1) made only of the ax-rules are not

∼w-equivalent. That is ax
⊢ ⟨𝑥!𝑎⟩, (𝑥?𝑎)

̸∼w ax
⊢ 𝑃(𝑦, 𝑎, 𝑡), (𝑦?𝑎)

.

However, the choice of active variables may change the pair of atoms linked
by the ax-rules. For an example, see Equation (2) below, where we show two
non ∼w-equivalent derivations in which we trace the occurrences of atoms in the
derivation to show how the choice of the active variables changes the pairs of
atoms linked by the ax-rules.

ax

⊢ ⟨𝑥!𝑎⟩ , (𝑥?𝑎)
ax

⊢ ⟨𝑥!𝑏⟩ , (𝑥?𝑏)
mix

⊢ ⟨𝑥!𝑎⟩ , ⟨𝑥!𝑏⟩ , (𝑥?𝑎) , (𝑥?𝑏)
∃
⊢ ⟨𝑥!𝑎⟩ , ⟨𝑥!𝑏⟩ , ∃𝑧. (𝑥?𝑧) , ∃𝑧. (𝑥?𝑧)

̸∼w

ax

⊢ ⟨𝑥!𝑎⟩ , (𝑥?𝑎)
ax

⊢ ⟨𝑥!𝑏⟩ , (𝑥?𝑏)
mix

⊢ ⟨𝑥!𝑎⟩ , ⟨𝑥!𝑏⟩ , (𝑥?𝑏) , (𝑥?𝑎)
∃
⊢ ⟨𝑥!𝑎⟩ , ⟨𝑥!𝑏⟩ , ∃𝑧. (𝑥?𝑧) , ∃𝑧. (𝑥?𝑧)

(2)

We prove the following canonicity results.

Theorem 1 ([1]). Let D and D′ be derivations in MALL1. The following hold:

1. D ≈w D′ iff {{D}}co = {{D′}}co.

2. D ≃w D′ iff {{D}}sl = {{D′}}sl.
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