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Introduction. This work investigates a proof-relevant and validity preserving interpolation theorem for
the linear logic with fixed points, known as µLL. In particular, we focus on strongly valid, cut-free and
one-sided proofs within its circular proof system, denoted µLLω [Dou17]. While interpolation has been
extensively studied in classical logic, its formulation in the context of fixed-point extensions of linear logic
remains an active area of research. Our approach builds on the work of Saurin [Sau25], whose results we
extend in this study. Formally, the theorem we want to prove is the following:

Theorem 1 (Proof-relevant Interpolation Theorem). Let P ∈ µLLω be a cut-free and strongly valid proof
of ⊢ Γ, and s a splitting of Γ into two disjoint subsets Γl and Γr. Then there exists a µLLω formula I built
on the common language of Γl and Γr (that is L(I) ⊆ L(Γl)∩L(Γr)) and two cut-free, strongly valid proofs

in µLLω P1 ⊢ Γl, I, and P2 ⊢ I⊥,Γr, such that
P1

⊢ Γl, I

P2

⊢ I⊥,Γr
(Cut)

⊢ Γ

→ω
(Cut) P.

Background on µLLω. We start by defining µLLω formulas by extending the usual grammar of formulas
F in LL with 3 cosntructs (F ::= · · · | X | µX.F | νX.F ) and the involution on its formulas as (X)⊥ = X
and (µX.F )⊥ = νX.F⊥ where X is a fixed-point variable and the least and greatest fixed-point operators,
denoted as µ and ν respectively, are binders. Inference rules of µLLω correspond to the usual LL rules,
extended with the following two unfolding rules:

⊢ F [νX.F/X],Γ
(ν)

⊢ νX.F,Γ

⊢ F [µX.F/X],Γ
(µ)

⊢ µX.F,Γ

Due to the recursive nature of the fixed-point rules, it is possible to construct infinite derivation trees even
in the absence of cuts and contractions. Such infinite derivation trees are referred to as µLL∞ pre-proofs. In
some cases, these infinite trees contain only finitely many distinct subtrees. When this occurs, we call the
derivation trees regular. Such regular infinite trees can be finitely represented as trees with back-edges that
form cycles, yielding what are known as µLLω pre-proofs. These proof structures are therefore referred to as
circular pre-proofs. We formally define these graphs, as follows:

Definition 1 (Circular pre-proof). A µLLω pre-proof pre-proof of sequent ⊢ Γ, is a tuple P = (D,R), where:

• D = (V, s, r, p) is a derivation tree where V is a set of vertices, s : V → Seqs is a total function labelling
vertices with sequents in µLLω, r : V → Rules is a partial function labelling vertices with inference
rules in µLLω, p : N × V → V is a partial function that maps a number n and a vertex v, with a
vertex v′, such that v′ is labeled by the nth premise of the rule r(v) over the sequent s(v), and for

every v ∈ V ,
⊢ s(p(1, v)) . . . ⊢ s(p(m, v))

(r(v))
⊢ s(v)

is an instance of the rule r(v) in µLLω, with m

premises. A vertex B ∈ V such that r(B) is undefined is called a bud node. The set of bud nodes of a
derivation graph D, is written as Bud(D).
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• R : V → V is a partial function, that maps each one of the bud nodes in Bud(D) to an internal node
in the derivation tree, called a companion, satisfying that if B ∈ Bud(D) and R(B) = C, then r(C) is
defined and s(B) = s(C).

To ensure that µLLω pre-proofs represent sound arguments, they must satisfy a correctness criterion known
as the validity or progress or global trace condition. Intuitively, a pre-proof P is valid if every infinite path in
the graph induced by P is accompanied by an infinitely progressing thread. A thread is defined as a sequence
of formulas (Fi) associated with a path (vi), given by a sequence of vertices in the proof graph, such that for
each index i, we have Fi ∈ s(vi) and Fi+1 ∈ s(vi+1), and either Fi → Fi+1 or Fi = Fi+1. Here, the relation
→ denotes the Fischer-Ladner subformula relation, defined as follows:

(F ⋆ G) → F (F ⋆ G) → G (∆F ) → F (σX.F ) → F [σX.F/X]

where ⋆ ∈ {`,&,⊗,⊕}, ∆ ∈ {⊥, ?, !,∃x,∀x}, and σ ∈ {µ, ν}. We say that an infinite path in P is valid
if it admits a thread τ = (Fi) such that the minimal formula in the set of infinitely recurring formulas,
denoted min(Inf(τ)), is a ν-formula, i.e. of the form F = νX.F ′, where F is minimal with respect to the
usual subformula ordering. In addition, we consider a stronger notion of validity, strong validity. An infinite
path (vi) is said to be strongly valid if there exists a valid thread τ = (Fi) over (vi), and there exists an
index k such that for all h, i ≥ k, whenever vh = vi, it follows that Fh = Fi (as formula occurrences of the
considered sequent). In other words, beyond some point, the thread consistently associates the same formula
with each repeated vertex. This ensures that τ exhibits a form of stability or convergence along the path.
With this in mind, it is then possible to define a µLLω strongly valid proof as follows:

Definition 2. A µLLω pre-proof is a strongly valid µLLω proof, if all of its infinite paths are strongly valid.

An essential property of strongly valid proofs is that one can extract (co)inductive invariants from the cycles
and they can thus be finitized in a finitary proof system with (co)induction rules à la Park [Dou17].

Proof-relevant interpolation in LL. Our primary goal is to establish the interpolation theorem stated in
Theorem 1, which ensures that interpolation can be achieved (and preserves) strong validity. As a foundation,
we rely on a result of the second author [Sau25], proving a proof-relevant interpolation theorem for linear
logic (LL) using Maehara’s method [Mae60]. This result can be stated as follows:

Theorem 2. Let Γ,∆ be lists of LL formulas and π ⊢ Γ,∆ a cut-free proof. There exists a LL formula I
such that L(I) ⊆ L(Γ) ∩ L(∆) and two cut-free proofs π1, π2 of ⊢ Γ, I and ⊢ I⊥,∆ respectively such that

π1

⊢ Γ, I

π2

⊢ I⊥,∆
(Cut)

⊢ Γ,∆

→∗
(Cut) π.

The proof of this theorem amounts to a cut introduction process synthesizing the interpolant in two phases:

1. Ascending Phase: The first phase consists of traversing the proof π from the conclusion of the
proof until the axioms, while dividing each of the sequents ⊢ Γ into a splitting (Γl,Γr) inherited from
the initial splitting of the conclusion, and the ancestor relation. In the end, each one of the logical
axiom rules (Ax)

⊢ A,A⊥ will be in one of the four following splittings: ({A,A⊥}, {}), ({A}, {A⊥}),
({A⊥}, {A}), ({}, {A,A⊥}). This also applies to the leaves of the proof trees obtained with (1)

⊢ 1 and
(⊤)

⊢ ⊤,Γ . Once every sequent in the proof has been split, the descending phase starts.

2. Descending Phase: Equipped with the splitting of each sequent, the cut introduction starts in the
leaves of the proof and asynchronously descends to the rest of the sequents, until ultimately reaching
the conclusion of the proof. We call active, a sequent where all its premises conclude with cut rules.
Since π is cut-free, at the beginning of the descending phase only the leaves of the proof are trivially
active. We then apply cut introduction to active sequents, while maintaining the following invariants:

• When a sequent is active with splitting (Γl,Γr), the cut formulas of its premises are interpolants
for the premise sequents with respect to their splitting (This condition is trivially satisfied initially
since the active axioms have no premise).
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• When an inference r has conclusion c which is active, we apply a (sequence of) cut-introduction
step(s) on this inference, in such a way that c becomes the conclusion of the introduced cut and
the premises of this cut correspond to the splitting associated with sequent c.

Interpolating µLLω pre-proofs. Our initial approach to proving Theorem 1 is to extend the proof of
Theorem 2 to accommodate the use of fixed-point rules µ and ν. However, this extension introduces new
challenges due to the structure of circular pre-proofs in µLLω. In particular, circular pre-proofs are not
well-founded: they may contain cycles formed by the back-edges, which allow bud nodes to refer back to
companion nodes, i.e. earlier sequents in the derivation tree. This lack of well-foundedness poses a problem
for Maehara’s method, which fundamentally relies on the inductive structure of proofs.

Another key complication is the interaction between back-edges and the splitting of sequents. Given an initial
splitting of the conclusion, the ascending phase induces corresponding splittings on intermediate sequents.
However, nothing ensures that the splitting assigned to each bud node will match that of its companion. This
inconsistency breaks the assumptions needed to apply interpolation. Fortunately, this issue can be addressed
with the following lemma (relying on a simple combinatorial argument on the number of splittings):

Lemma 1. Let P be a µLLω pre-proof of a sequent ⊢ Γ. Then one can unfold the back-edges of P into
another µLLω pre-proof P ′ = (D′,R′) which is splitting-invariant. That is, for any initial splitting (Γl,Γr),
the ascending phase yields a decorated derivation P ′ such that for every bud node B with associated splitting
(∆l,∆r), the corresponding companion node C = R′(B) also has splitting (∆l,∆r).

Therefore, considering then a splitting invariant circular pre-proof, it is possible to formulate a non-validity
preserving interpolation proof. We can do this, by maintaining the previously explained ascending phase
and adding the cases for the bud and companion nodes in the descending phase:

• Bud nodes: To each leaf we associate the rule
⊢ Γl, Xs ⊢ Γr, Xs

(Cut)
⊢ Γl,Γr

with splitting (Γl,Γr) to initiate

the cut introduction. (Recall that for a fixed point variable X, X⊥ = X.)

• Companion nodes: Suppose we reach a companion node with a split sequent ⊢ Γl,Γr of the bud
nodes associated with the variables X1, ..., Xn. We consider multiple variables, since it could be the
case that multiple bud nodes point to the same companion. Due to the descending phase, we then

have
πl

⊢ Γl, I

πr

⊢ Γr, I
⊥

(Cut)
⊢ Γl,Γr

where πl (resp. πr) has some leaves (⊢ Γ1
l , X1), ..., (⊢ Γ1

n, Xn) (resp. (⊢

Γ1
r, X1), ..., (⊢ Γn

r , Xn)), and I has X1, ..., Xn as free variables, as well as other free variables related to
other renaming rules, which target has not been yet reached. We then modify the proof as follows:

πl[I1/Xp(1)]...[In/Xp(n)]

⊢ Γl, I[I1/Xp(1)]...[In/Xp(n)]
(σn)...

(σ3)
⊢ Γl, σ3Xp(3)...σnXp(n)I[I1/Xp(1)][I2/Xp(2)] = I3

(σ2)
⊢ Γl, σ2Xp(2)...σnXp(n)I[I1/Xp(1)] = I2

(σ1)⊢ Γl, σ1Xp(1)...σnXp(n)I = I1

πr[I
⊥
1 /Xp(1)]...[I

⊥
n /Xp(n)]

⊢ Γr, I[I
⊥
1 /Xp(1)]...[I

⊥
n /Xp(n)]

(σ⊥
n )...

(σ⊥
3 )

⊢ Γr, σ
⊥
3 Xp(3)...σ

⊥
n Xp(n)I[I

⊥
1 /Xp(1)][I

⊥
2 /Xp(2)] = I⊥3

(σ⊥
2 )

⊢ Γr, σ
⊥
2 Xp(2)...σ

⊥
n Xp(n)I[I

⊥
1 /Xp(1)] = I⊥2

(σ⊥
1 )

⊢ Γr, σ
⊥
1 Xp(1)...σ

⊥
n Xp(n)I

⊥ = I⊥1
(Cut)

⊢ Γl,Γr

where p is a permutation over {1, ..., n}, and each σi ∈ {µ, ν} (with (µ)⊥ = ν). The choice of the σi

and the permutation p is arbitrary since we do not analyze the validity of the proof for now.

The previous steps updated each leaf ⊢ Γl
i, Xi (resp. ⊢ Γr

i , Xi) of πl (resp. πr) to ⊢ Γl
i, Ii (resp. ⊢ Γr

i , I
⊥
i ).

Thus, it is possible to map each bud with variable Xi to the sequent where Ik appears, with p(k) = i. In
the end, when the descending phase reaches the root of the proof, we get a triple (I, πl, πr) such that:

• I is a µLLω formula since all free variables have been bounded.

• πl and πr are circular pre-proofs with conclusions ⊢ Γl, I and ⊢ Γr, I
⊥ respectively.

• I is in the common language of Γ and ∆, by the descending phase from the proof of Theorem 1.
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Cutting πl and πr results in a finite representation of a proof of which the cuts can be eliminated reaching π
as a limit: indeed, since the interpolant is synthesized by cut-introduction, their cut-elimination progressively
reconstructs the infinite unfolding of π.

A key observation in the interpolation process is that the initial splitting of formulas in the conclusion
determines how threads are distributed between the two sides of the interpolated pre-proof. Specifically,
if a thread τ passes through a formula F in the conclusion of the original pre-proof, and F ∈ Γl (resp.
F ∈ Γr), then τ will be assigned to the left (resp. right) side of the interpolated pre-proof. Since the
interpolation process duplicates the structure of the original pre-proof on both sides, every infinite path (vi)
is also duplicated, yielding two copies: (vi)l and (vi)r. If τ validates (vi) in the original proof and is assigned
to, say, the left side, then the corresponding path (vi)r on the right side requires a new thread for validation.
This is where the interpolant formula I plays a crucial role: it acts as a bridge, enabling the validation of
such “unthreaded” paths on the opposite side.

Interpolating strongly valid proofs. To ensure strong validity of the interpolated pre-proof, it remains
to verify that all infinite paths, including those not directly supported by a thread, can be validated using
I. This involves solving the system of equations induced by the bud-companion relationships, determining
appropriate permutations p of fixed-point variables, and assigning values to the fixed-point operators σ.
These assignments ensure that the interpolant I contributes the necessary structure to support the validation
of all paths in both sides of the interpolated proof.

However, not every cut-free and strongly valid proof admits a solution to the system of equations required
to construct an interpolant. We conjecture that for such a proof to be interpolable, that is to support
the construction of an appropriate interpolant, it must satisfy an additional structural constraint known as
tree-compatibility, a condition introduced by Sprenger and Dam [SD03]. Establishing this condition requires
defining two partial orders over the set of bud nodes in a circular pre-proof: one named structural connectivity,
and the other referred to as the induction order.

Definition 3 (Basic cycle). Let P = (D,R) be a µLLω pre-proof and B ∈ Bud(D). The basic cycle CB is
obtained from the unique path from R(B) to B by replacing the unique edge (v,B) in D for (v,R(B)).

Definition 4 (Structural connectivity). Let P = (D,R) be a µLLω pre-proof. The relation ≤P on Bud(D)
is defined as: B2 ≤P B1 iff R(B2) appears on the basic cycle CB1

.

Definition 5 (Induction order). Let P = (D,R) be a µLLω pre-proof. A (non-strict) partial order ◁ on
Bud(D) is said to be an induction order for P if:

• B ◁ B1 and B ◁ B2 implies B1 = B2 or B1 ◁ B2 or B2 ◁ B1 (i.e. ◁ is forest-like)

• Every weakly ≤P -connected set B ⊆ Bud(D) has a ◁-greatest element, i.e. an element Bmax ∈ B
such that B ◁ Bmax for all B ∈ B. (Note that in particular we have B1 ≤P B2 implies B1 ◁ B2 or
B2 ◁ B1)

Definition 6 (Tree-compatibility). Let P = (D,R) be a µLLω pre-proof. An induction order (Bud(D),◁)
over P is tree-compatible if for all B,B′ ∈ Bud(D), such that B ≤P B′ and B′ ≰P B′, then B ◁ B′.

The structural connectivity of a circular pre-proof is directly determined by its syntactic structure and can be
modified through unfolding. In contrast, extracting the induction order from a strongly valid proof requires
a more refined analysis. To achieve this, we introduce a structure that groups threads according to the
strongly connected components of the proof graph and identifies those that contribute to strong validity.
This idea originates from the work of Brotherston [Bro06], who introduced trace manifolds in the context of
the CLKIDω circular proof system. We adapt this concept to our setting and define a corresponding structure
called strongly valid thread manifolds. From this structure, we can extract an induction order and define a
refined version, referred to as strongly valid ordered thread manifolds, where the set of threads is organized
according to the extracted induction order. This process is summarized in the following two proven lemmas:

Lemma 2. Any µLLω pre-proof is strongly valid iff it has a strongly valid thread manifold.
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Lemma 3. A µLLω pre-proof P has a strongly valid thread manifold iff there exists an induction order ◁
for P and P has an strongly valid ordered thread manifold with respect to ◁.

We can now state our conjecture regarding tree-compatibility and its role in enabling interpolation:

Conjecture 1. Let P be a cut-free, splitting-invariant, and strongly valid µLLω pre-proof. If P is tree-
compatible, then it admits a strong validity-preserving interpolation.

The strategy for proving this conjecture relies on leveraging the tree-compatibility property to adapt in-
terpolation techniques developed for similar circular proof systems, such as the µ-calculus (see [ALMT21]).
In addition, we conjecture that any non-tree-compatible strongly valid proof can made tree-compatible via
unfolding of the back-edges, following Sprenger and Dam’s algorithm to transform proofs [SD03].

Conjecture 2. Let P be a µLLω strongly valid but non-tree-compatible pre-proof. Then there exists an
unfolded version P ′ of P that is both strongly valid and tree-compatible.

With all these ingredients, given a strongly valid and cut-free proof P in µLLω, we sketch the proof of
Theorem 1 under the assumption of our two conjectures, as follows:

Strongly valid, cut-free P Strongly valid, cut-free,
splitting invariant P ′

Strongly valid, cut free, split-
ting invariant, with strongly
valid ordered thread manifold,

non tree-compatible P ′

Strongly valid, cut free, split-
ting invariant, with strongly
valid ordered thread manifold,

tree-compatible P ′′

Strongly valid interpo-
lated proof P ′′′ of P

Lemma 1

Lemma 2 + Lemma 3 Lemma 2 + Lemma 3

Conjecture 2 Conjecture 1
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