
Linear Logic and Choreographic Programming

Matteo Acclavio1 Giulia Manara2∗ Fabrizio Montesi2

1 University of Sussex, 2 University of Southern Denmark

Choreographic programming is a high-level paradigm for specifying the in-
tended global behavior of communicating systems [12]. In this setting, a chore-
ography describes the interaction among processes as a single, coherent specifica-
tion. From a choreography, local process implementations can be automatically
derived through endpoint projection (EPP), and, under suitable conditions, a
choreography can be extracted from a given network of processes. A key prop-
erty of this paradigm is that choreographies are deadlock-free by design, and so
are the process networks generated by EPP. Despite its advantages, a funda-
mental question remains open:

Which processes can be captured by choreographies? (1)

This connection was anticipated in [5], which relates choreographies to cut elim-
ination in LL. Since cut elimination implies progress [14], this suggests that
choreographies correspond to proofs of deadlock freedom. We formalize this
idea by developing a general logical methodology for reasoning about process
calculi in the style of logic programming, where processes are represented as
formulas and executions correspond to derivations.1 In particular, we extend
first-order multiplicative additive linear logic (MALL1) with a non-commutative
connective ◀ for prefixing and nominal quantifiers И, Я to model name restric-
tion, yielding the system PiL. This framework supports faithful encodings of
various 𝜋-calculus dialects (monadic, polyadic, synchronous, asynchronous) and
allows one to characterize deadlock freedom in logical terms: a process 𝑃 is
deadlock-free whenever the formula ⟦𝑃⟧ is provable.

By establishing a correspondence between proofs and process executions,
we obtain a foundation for reasoning about global behavior. We build on this
connection to study the expressiveness of choreographies and show that, for a
broad class of deadlock-free processes choreographic programming is complete.

The system PiL. We consider formulas are generated by countable set of
variables V and a unique constant ◦ (called unit), using the multiplicative con-
junction (⊗) and disjunction (`), the additive conjunction (&) and disjunction

∗Funded by the European Union (ERC, CHORDS, 101124225)
1Our approach follow a longstanding line of work on processes-as-formulas approach in-

spired by the logic programming paradigm, see, e.g., [10, 9, 4, 8]

1

𝐴, 𝐵 := ◦ unit (atom)
| ⟨𝑥!𝑦⟩ atom
| (𝑥?𝑦) atom
| 𝐴 ` 𝐵 par
| 𝐴 ⊗ 𝐵 tensor
| 𝐴 ◀ 𝐵 prec
| 𝐴 ⊕ 𝐵 oplus
| 𝐴 & 𝐵 with
| ∀𝑥.𝐴 for all
| ∃𝑥.𝐴 exists
| И𝑥.𝐴 new
| Я𝑥.𝐴 ya

ax
S ⊢ ⟨𝑥!𝑦⟩, (𝑥?𝑦)

S ⊢ Γ, 𝐴, 𝐵`
S ⊢ Γ, 𝐴 ` 𝐵

S1 ⊢ Γ, 𝐴 S2 ⊢ 𝐵,Δ
⊗
S1,S2 ⊢ Γ, 𝐴 ⊗ 𝐵,Δ

S ⊢ Γ, 𝐴𝑘
⊕
S ⊢ Γ,

⊕𝑛

𝑖=1 𝐴𝑖

for a 𝑘 ∈ {1, . . . , 𝑛}

S ⊢ Γ, 𝐴1 · · · S ⊢ Γ, 𝐴𝑛
&

S ⊢ Γ,
˘𝑛

𝑖=1 𝐴𝑖

S ⊢ Γ, 𝐴
∀ †
S ⊢ Γ,∀𝑥.𝐴

S ⊢ Γ, 𝐴[𝑦/𝑥]
∃

S ⊢ Γ, ∃𝑥.𝐴

◦
S ⊢ ◦

S1 ⊢ Γ, 𝐴1, . . . , 𝐴𝑛 S2 ⊢ Δ, 𝐵1, . . . , 𝐵𝑛
◀ 𝑛 ≥ 0

S1,S2 ⊢ Γ,Δ, 𝐴1 ◀ 𝐵1, . . . , 𝐴𝑛 ◀ 𝐵𝑛

S ⊢ Γ, 𝐴
И◦ †

S ⊢ Γ,И𝑥.𝐴

S, 𝑥И ⊢ Γ, 𝐴
Иload †

S ⊢ Γ,И𝑥.𝐴

S ⊢ Γ, 𝐴[𝑦/𝑥]
Иpop S, 𝑦И ⊢ Γ,Я𝑥.𝐴

S ⊢ Γ, 𝐴
Я◦ †

S ⊢ Γ,Я𝑥.𝐴

S, 𝑥Я ⊢ Γ, 𝐴
Яload †

S ⊢ Γ,Я𝑥.𝐴

S ⊢ Γ, 𝐴[𝑦/𝑥]
Яpop S, 𝑦Я ⊢ Γ,И𝑥.𝐴

Figure 1: Sequent calculus rules, with † := 𝑥 ∉ (free(Γ) ∪ S).

(⊕), the universal (∀) and existential (∃) quantifiers, together with a novel con-
nective prec2 (◀) and two dual nominal quantifiers called new (И𝑥) and ya
(Я). The syntax of formulas is given in Figure 1,

The (linear) implication 𝐴 ⊸ 𝐵 is defined as 𝐴⊥ ` 𝐵, where the negation
is defined by the following the standard De Morgan laws for MALL1, plus the
following:

⟨𝑥!𝑦⟩⊥ = (𝑥?𝑦) ◦⊥ = ◦ 𝐴 ◀ 𝐵⊥ = 𝐴⊥ ◀ 𝐵⊥ И𝑥.𝐴⊥ = Я𝑥.𝐴⊥

In Figure 1, we also recall the rules of the sequent calculus PiL. These
rules operate on sequents of the form S ⊢ Γ, made of a set of occurrences of
formulas Γ, and a store S of nominal variable, that is, element of the form
𝑥И or 𝑥Я for a variable 𝑥 ∈ V. The rules are divided into two groups: the first
group contains the standard rules of MALL1. The second group contains the
rules for the unit ◦, the new connective ◀ and the nominal quantifiers И and Я.

Remark 1 (Rules for the prec connective). The non-commutative and non-
associative connective ◀ is governed by a rule ◀ introducing multiple ◀-formulas

simultaneously. The case for 𝑛 = 0 is the standard rule
S1 ⊢ Γ S2 ⊢ Δ

mix
S1,S2 ⊢ Γ,Δ

. The

case 𝑛 = 2 rules captures the self-duality of ◀, by introducing in a single rule the
connetive and its dual, following a general pattern observed for multiplicative
connectives (see [1, Remark 5]).

Remark 2 (Rules for the nominal quantifiers). The store enforces a disci-
plined use of names by ensuring that each И is matched with at most one Я (or

2The name prec is an abbreviation for preceed. The name is chosen to suggest that the
connective models the prefix operator in process calculi, which is used to model the sending
and receiving of messages.

2

vice versa) along a derivation branch. If a rule И◦ (resp. Я◦) is applied, then
the nominal quantifier is not linked, reason why the rule reminds the standard
universal quantifier rule. Otherwise, either the rule Иload (resp. Яload) loads a
nominal variable in the store, or a rule Иpop (resp. Яpop) uses a nominal variable
(of dual type) occurring in the store as a witness variable.

The rules for nominal quantifier are designed to ensure four key properties:

1. Equivariance:

Q

𝑥.

Q

𝑦.𝐴 is logically equivalent to

Q

𝑦.

Q

𝑥.𝐴.

2. Non-diagonality:

Q

𝑥.

Q

𝑦.𝐴(𝑥, 𝑦) does not entail

Q

𝑧.𝐴(𝑧, 𝑧), and vice versa.3

3. Scope extrusion: (Q

𝑥.𝐴)`𝐵 and

Q

𝑥.(𝐴`𝐵) are equivalent when 𝑥 does not
occur in 𝐵, reflecting the behavior of restriction in parallel composition.

4. Name-choice: if ⊙ ∈ {⊕,&}, then

Q

𝑥.𝐴⊙ Q

𝑥.𝐵 is equivalent to

Q

𝑥.(𝐴 ⊙ 𝐵).

Theorem 3. The rule
S1 ⊢ Γ, 𝐴 S2 ⊢ 𝐴⊥,Δ

cut
S1,S2 ⊢ Γ,Δ

is admissible in PiL.

Proof. The proof is obtained by extending the cut-elimination procedure for
MALL1. Handling the (multiplicative) connective ◀ is straightforward. How-
ever, for nominal quantifiers, the proof requires more care due to the implicit
links between store and nominal quantifier rules. This requires to use the aux-

iliary rule:
S, 𝑥И, 𝑥Я ⊢ Γ

S-cut
S ⊢ Γ

which is introduced and eliminated during the

cut-elimination procedure. For details, see [2]. □

Choreographies as proofs (of deadlock-freedom)
We illustrate how PiL can be used to characterize deadlock freedom in the
race-free4 fragment of the synchronous 𝜋-calculus. This allows us to establish
a choreographies-as-proofs correspondence, proving the completeness of chore-
ographies with respect to deadlock-free race-free finite networks.

The syntax and operational semantics of the 𝜋-calculus are recalled in Fig-
ure 2. An execution of a process 𝑃 is successful if it terminates in Nil. The exe-
cution tree of a process 𝑃 is a tree whose nodes are labeled with the processes
that can be executed from 𝑃, and whose edges are labeled with the reduction
steps that lead to the child nodes.

The translation of processes into formulas is defined as follows:

⟦Nil⟧ = ◦ ⟦𝑃 | 𝑄⟧ = ⟦𝑃⟧` ⟦𝑄⟧ ⟦(𝜈𝑥) (𝑃)⟧ = И𝑥. ⟦𝑃⟧
⟦𝑥!⟨𝑦⟩.𝑃⟧ = ⟨𝑥!𝑦⟩ ◀ ⟦𝑃⟧ ⟦𝑥?(𝑦).𝑃⟧ = ∃𝑦.((𝑥?𝑦) ◀ ⟦𝑃⟧)

⟦𝑥 ⊳ {ℓ : 𝑃ℓ }ℓ∈𝐿⟧ =
˘
ℓ∈𝐿

(⟨𝑥!ℓ⟩ ◀ ⟦𝑃ℓ⟧) ⟦𝑥 ⊲ {ℓ : 𝑃ℓ }ℓ∈𝐿⟧ =
⊕
ℓ∈𝐿

((𝑥?ℓ) ◀ ⟦𝑃ℓ⟧)
(2)

3This fails for self-dual nominal quantifiers, as in [13, 7, 6, 11].
4A process is race-free when no two sub-processes ever compete for the same resource, i.e.,

no reachable term contains parallel sends or receives (messages or labels) on the same channel.

3

𝑃,𝑄, 𝑅 := Nil nil
| 𝑥!⟨𝑦⟩.𝑃 send (𝑦 on 𝑥)
| 𝑥?(𝑦).𝑃 receive (𝑦 on 𝑥)
| 𝑃 | 𝑄 parallel
| (𝜈𝑥)𝑃 nu
| 𝑥 ⊳ {ℓ : 𝑃ℓ }ℓ∈𝐿 label send (on 𝑥)
| 𝑥 ⊲ {ℓ : 𝑃ℓ }ℓ∈𝐿 label receive (on 𝑥)

Com: 𝑥!⟨𝑎⟩.𝑃 | 𝑥?(𝑏).𝑄 → 𝑃 | 𝑄 [𝑎/𝑏]
Choice: 𝑥 ⊳ {ℓ : 𝑃ℓ }ℓ∈𝐿 → 𝑥 ⊳

{
ℓ𝑘 : 𝑃ℓ𝑘

}
if ℓ𝑘 ∈ 𝐿

Label: 𝑥 ⊳
{
ℓ𝑘 : 𝑃ℓ𝑘

}
| 𝑥 ⊲ {ℓ : 𝑄ℓ }ℓ∈𝐿 → 𝑃ℓ𝑘 | 𝑄ℓ𝑘 if ℓ𝑘 ∈ 𝐿

Res: (𝜈𝑥)𝑃 → (𝜈𝑥)𝑃′ 𝑃 → 𝑃′

Par: 𝑃 | 𝑄 → 𝑃′ | 𝑄 𝑃 → 𝑃′

𝐶,𝐶ℓ := 0 | [p.𝑥 → q.𝑦];𝐶 | p.𝐿 → q.𝐿′ : 𝑘

{
ℓ : 𝐶ℓ ℓ ∈ 𝐿

ℓ : 𝑆ℓ ℓ ∈ 𝐿′ \ 𝐿

}
| (𝜈𝑥)𝐶𝑥 (with 𝐶𝑥 containing no (𝜈𝑥))

end communication choice restriction

Figure 2: Above: syntax and reduction semantics for the 𝜋-calculus.
Below: syntax for choreographies.

The translation extends with minor adjustments to asynchronous and polyadic
variants. This latter requires 𝑛-ary send/receive predicates in PiL.

Remark 4. The terms 𝑥 ⊳ {ℓ : 𝑃ℓ }ℓ∈𝐿 and 𝑥 ⊲ {ℓ : 𝑃ℓ }ℓ∈𝐿 model internal and
external choice, respectively. Internal choice, made by the process itself, is en-
coded using the connective &, while external choice, determined by the context,
corresponds to ⊕. The key distinction lies in how these connectives behave dur-
ing proof search: & introduces branching by duplicating the context, enabling
multiple execution paths to be explored, whereas ⊕ selects a single branch. This
branching mechanism is essential for representing non-determinism and reason-
ing about deadlock freedom.

The translation of processes execution trees (resp. successful execution trees)
into open derivations (resp. derivations) in PiL is defined by induction on the
structure of the trees is given by considering the following translation of the
operational semantics reduction steps into open derivations in PiL. Details are
provided in [3, 2]. See Figure 3 for an example of an execution of a process
and its corresponding derivation. Thanks to this translation, we can formulate
a correspondence between the executions of a process and the derivations of its
translation in PiL.

Theorem 5. Let 𝑃 be a race-free process. Then 𝑃 is deadlock-free iff ⊢PiL 𝑃.

Proof. If 𝑃 is deadlock-free, then all its executions terminate successfully, and
the translation of the execution tree of 𝑃 is a proof in PiL. Conversely, given a
proof of ⊢ ⟦𝑃⟧ in PiL, we can independent use rule permutations 5 to transform
a given derivation of ⟦𝑃⟧ into a derivation made of blocks, each of which cor-
responds to a reduction step of the operational semantics. Then translate such
derivation into a successful execution tree of 𝑃. Details are provided in [3]. □

Such correspondence establishee the foundation for relating choreographies
to proofs.

5As the ones usually used during cut-elimination to ensure that the active formula of a cut
is principal for a rule.

4

𝑃 = (𝜈𝑥) (𝜈𝑦)
(
p :: 𝑦!⟨𝑎⟩ | q :: 𝑦?(𝑎) | p1 :: 𝑥 ⊲

{
ℓ1 : 𝑥?(𝑏), ℓ2 : 𝑥!⟨𝑐⟩

}
| q1 :: 𝑥 ⊳

{
ℓ1 : 𝑥!⟨𝑏⟩, ℓ2 : 𝑥?(𝑐)

})

ax
⟨𝑦!𝑎⟩, (𝑦?𝑎)

∃
⟨𝑦!𝑎⟩, ∃𝑎.(𝑦?𝑎)

ax
⟨𝑥!ℓ1⟩, (𝑥?ℓ1)

ax
(𝑥?𝑏), ⟨𝑥!𝑏⟩

∃
∃𝑏.(𝑥?𝑏), ⟨𝑥!𝑏⟩

◀
⟨𝑥!ℓ1⟩ ◀ ∃𝑏.(𝑥?𝑏), (𝑥?ℓ1) ◀ ⟨𝑥!𝑏⟩

⊕

⟨𝑥!ℓ1⟩ ◀ ∃𝑏.(𝑥?𝑏), ©­«
(𝑥?ℓ1) ◀ ⟨𝑥!𝑏⟩

⊕
(𝑥?ℓ2) ◀ ∃𝑐.(𝑥?𝑐)

ª®¬
mix

⟨𝑦!𝑎⟩, ∃𝑎.(𝑦?𝑎), ⟨𝑥!ℓ1⟩ ◀ ∃𝑏.(𝑥?𝑏), ©­«
(𝑥?ℓ1) ◀ ⟨𝑥!𝑏⟩

⊕
(𝑥?ℓ2) ◀ ∃𝑐.(𝑥?𝑐)

ª®¬

ax
⟨𝑦!𝑎⟩, (𝑦?𝑎)

∃
⟨𝑦!𝑎⟩, ∃𝑎.(𝑦?𝑎)

ax
⟨𝑥!ℓ2⟩, (𝑥?ℓ2)

ax
⟨𝑥!𝑐⟩, (𝑥?𝑐)

∃
⟨𝑥!𝑐⟩, ∃𝑐.(𝑥?𝑐)

◀
⟨𝑥!ℓ2⟩ ◀ ⟨𝑥!𝑐⟩, (𝑥?ℓ2) ◀ ∃𝑐.(𝑥?𝑐)

⊕

⟨𝑥!ℓ2⟩ ◀ ⟨𝑥!𝑐⟩, ©­«
(𝑥?ℓ1) ◀ ⟨𝑥!𝑏⟩

⊕
(𝑥?ℓ2) ◀ ∃𝑐.(𝑥?𝑐)

ª®¬
mix

⟨𝑦!𝑎⟩, ∃𝑎.(𝑦?𝑎), ⟨𝑥!ℓ2⟩ ◀ ⟨𝑥!𝑐⟩, ©­«
(𝑥?ℓ1) ◀ ⟨𝑥!𝑏⟩

⊕
(𝑥?ℓ2) ◀ ∃𝑐.(𝑥?𝑐)

ª®¬
&

⟨𝑦!𝑎⟩, ∃𝑎.(𝑦?𝑎), ©­«
⟨𝑥!ℓ1⟩ ◀ ∃𝑏.(𝑥?𝑏)

&
⟨𝑥!ℓ2⟩ ◀ ⟨𝑥!𝑐⟩

ª®¬ , ©­«
(𝑥?ℓ1) ◀ ⟨𝑥!𝑏⟩

⊕
(𝑥?ℓ2) ◀ ∃𝑐.(𝑥?𝑐)

ª®¬
{И◦ ,`}

И𝑥.И𝑦.
©­«⟨𝑦!𝑎⟩ ` ∃𝑎.(𝑦?𝑎) ` ©­«

⟨𝑥!ℓ1⟩ ◀ ∃𝑏.(𝑥?𝑏)
&

⟨𝑥!ℓ2⟩ ◀ ⟨𝑥!𝑐⟩
ª®¬` ©­«

(𝑥?ℓ1) ◀ ⟨𝑥!𝑏⟩
⊕

(𝑥?ℓ2) ◀ ∃𝑐.(𝑥?𝑐)
ª®¬ª®¬

(𝜈𝑥) (𝜈𝑦)
(
p.{ℓ}→ q.{ℓ, ℓ′} : 𝑥

{
ℓ : p.𝑎 → q.𝑎 : 𝑦; p1.𝑏 → q1.𝑏 : 𝑥; 0
ℓ′ : p.𝑎 → q.𝑎 : 𝑦; q1.𝑐 → p1.𝑐 : 𝑥; 0

})
Figure 3: The process 𝑃, the derivation corresponding to two possible execu-
tions, and the choreography extracted from the derivation.

Theorem 6. Let 𝑃 be a race-free flat process, then

𝑃 is deadlock-free ⇐⇒ there is a choreography 𝐶 such that EPP (𝐶) = 𝑃.

Proof. It follows from the proof of Theorem 5: each of the blocks corresponding
to the reduction step in the reduction semantics can be seen as a choreographic
instruction. □

An example of a choreography extracted from a proof in PiL is shown in
Figure 3.

References
[1] Acclavio, M.: Sequent systems on undirected graphs. In: Benzmüller, C.,

Heule, M.J., Schmidt, R.A. (eds.) Automated Reasoning. pp. 216–236.
Springer Nature Switzerland, Cham (2024)

[2] Acclavio, M., Manara, G.: Proofs as execution trees for the 𝜋-calculus
(2025), https://arxiv.org/abs/2411.08847

[3] Acclavio, M., Manara, G., Montesi, F.: Formulas as processes, deadlock-
freedom as choreographies. In: Vafeiadis, V. (ed.) Programming Languages
and Systems. pp. 23–55. Springer Nature Switzerland, Cham (2025)

[4] Bruscoli, P.: A purely logical account of sequentiality in proof search. In:
International Conference on Logic Programming. pp. 302–316. Springer
(2002)

5

https://arxiv.org/abs/2411.08847

[5] Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Dis-
tributed Comput. 31(1), 51–67 (2018). https://doi.org/10.1007/S00446-
017-0295-1, https://doi.org/10.1007/s00446-017-0295-1

[6] Cheney, J.: A simpler proof theory for nominal logic. In: Sassone, V. (ed.)
Foundations of Software Science and Computational Structures. pp. 379–
394. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

[7] Gabbay, M.J., Pitts, A.M.: A new approach to abstract syn-
tax with variable binding. Form. Asp. Comput. 13(3–5), 341–363
(jul 2002). https://doi.org/10.1007/s001650200016, https://doi.org/10.
1007/s001650200016

[8] Horne, R.: The consistency and complexity of multiplicative ad-
ditive system virtual. Sci. Ann. Comput. Sci. 25(2), 245–316
(2015). https://doi.org/10.7561/SACS.2015.2.245, https://doi.org/10.
7561/SACS.2015.2.245

[9] Kobayashi, N.: Concurrent Linear Logic Programming. Ph.D. thesis, Uni-
versity of Tokyo (1996)

[10] Miller, D.: The 𝜋-calculus as a theory in linear logic: Preliminary results.
In: Lamma, E., Mello, P. (eds.) Extensions of Logic Programming. pp.
242–264. Springer Berlin Heidelberg, Berlin, Heidelberg (1993)

[11] Miller, D., Tiu, A.: A proof theory for generic judg-
ments. ACM Trans. Comput. Logic 6(4), 749–783 (oct 2005).
https://doi.org/10.1145/1094622.1094628, https://doi.org/10.1145/
1094622.1094628

[12] Montesi, F.: Introduction to Choreographies. Cambridge University Press
(2023). https://doi.org/10.1017/9781108981491

[13] Pitts, A.M.: Nominal logic, a first order theory of names and
binding. Information and Computation 186(2), 165–193 (2003).
https://doi.org/https://doi.org/10.1016/S0890-5401(03)00138-X, https:
//www.sciencedirect.com/science/article/pii/S089054010300138X,
theoretical Aspects of Computer Software (TACS 2001)

[14] Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIG-
PLAN International Conference on Functional Programming. p. 273–286.
ICFP ’12, Association for Computing Machinery, New York, NY, USA
(2012). https://doi.org/10.1145/2364527.2364568, https://doi.org/10.
1145/2364527.2364568

6

https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/1094622.1094628
https://www.sciencedirect.com/science/article/pii/S089054010300138X
https://www.sciencedirect.com/science/article/pii/S089054010300138X
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568

