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Group theory is inconsistent with λ-calculus, in the sense that there exists no
interpretation of the variety of groups in the variety of combinatory algebras. This
follows from a result by Plotkin, Selinger, and Simpson, which shows that the
existence of a Mal’cev operation (i.e., congruence permutability) is inconsistent
with λ-calculus (see [8]). Semigroup theory might suggest that the situation is
not as pessimistic as it may seem. Let B := λfgx.f(gx) denote the composition
combinator. The set of λ-terms modulo β-equivalence, equipped with the product
X ◦ Y := BXY , forms a semigroup (see [1, Chapter 21]). If one further assumes
η-equivalence, this structure becomes a monoid with identity element I := λx.x.
The present authors have initiated a project aimed at applying the rich toolkit of
semigroup theory to the study of this semigroup. The purpose of this note is dual:
to outline the scope of the project and to report on the progress made thus far.

The potential contributions of this project are twofold. Firstly, it continues the
tradition of uncovering classical algebraic structures within λ-calculus [6]. Given
that the set of all λ-terms does not admit a group structure, it is worthwile to
investigate whether certain subsets of λ-terms can form groups. Semigroup theory
comes to our rescue in this context, since it is not difficult to endow suitable sets of
λ-terms with the structure of a semigroup, and appropriate subsets of a semigroup
constitute a group (see Sections 1 and 2). In Section 3, we instead demonstrate
how symmetric groups can be identified within the λ-calculus, and we characterise
the maximal monoids of λ-terms whose invertible elements constitute a symmetric
group (see also [7]). Secondly, this project aims at describing the semigroup of
λ-terms of a given λ-theory determined by composition (see Section 4). In this
respect, Statman [9] has proven that the semigroup of λβ is SQ-universal, meaning
that every countable semigroup can be embedded in the semigroup of the term
model of an opportune λ-theory. Given any λ-theory T, we can associate to it the
semigroup (ΛT, ◦), where ΛT denotes the set of λ-terms modulo the equivalence
relation defined by T, and ◦ is the operation defined by composition. Although we
do not know whether this assignment from λ-theories to (countable) semigroups
is surjective, the remarkable result by Statman shows that for every countable
semigroup S, there exists a λ-theory S such that S embeds into (ΛS, ◦). This
suggests that the class of semigroups arising from λ-theories is at any rate very
broad.

1. A primer on Green relations

Let S be a semigroup. Certain equivalence relations on S, first studied by Green
in the 1950s, have played a central role in the development of semigroup theory.
These relations center on the notion of divisibility and, notably, all become trivial
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(i.e., degenerate to the total relation) when S is a group. For a detailed account of
semigroup theory, we refer the reader to the classic monograph [4].

From this point onward, we assume that S is a monoid. Let a, b ∈ S. The left
and right Green relations, denoted by L and R, are defined as follows:

(1) (a, b) ∈ L if there exist x, y ∈ S such that xa = b and yb = a;
(2) (a, b) ∈ R if there exist x, y ∈ S such that ax = b and by = a.

The letter H denotes their intersection L ∩ R. Given a ∈ S, we write La, Ra,
and Ha for its equivalence classes under L, R, and H, respectively. A celebrated
theorem of Green states that for any H-class H ⊆ S, either H2∩H = ∅ or H2 = H,
in which case H forms a subgroup of S. Note that H2 is a notation for the set
{h · k | h, k ∈ H}. An important corollary of Green’s theorem is that if e ∈ S is an
idempotent, then the H-class He is a subgroup of S with identity element e. This is
the largest subgroup of S containing e. Moreover, no H-class in S can contain more
than one idempotent, so the maximal subgroups of S are precisely the H-classes
that contain an idempotent. These are necessarily pairwise disjoint. If 1 is the unit
of the monoid S, then H1 is the group of invertible elements, traditionally called
the group of units. For example, when S is the monoid of λ-terms modulo η, it
follows from a theorem due independently to Dezani and to Bergstra and Klop [1,
Theorem 21.2.21] that HI coincides with the set of finite hereditary permutations
(see below).

2. Some special classes of terms

In light of the foregoing section, we aim to characterise nontrivial H-classes of
idempotent λ-terms. Given an idempotent term E, we look for elements A and B
such that (A,E) ∈ L and (B,E) ∈ R, with the idea of finding A = B ∈ L∩R = H.
A technique that exploits the results concerning the left- and right-invertibility of
λ-terms [2, Section 9.3], consists in constructing G,D such that G ◦ D =β I and
then in defining A := D ◦ E and B := E ◦G.

We focus our investigation on certain particularly well-behaved classes of λ-terms
(if not stated otherwise, we concentrate on closed terms). Note that all semigroups
we are going to define are subsemigroups of (Λλβ , ◦).

Definition 2.1. A λ-term is said to be regular if it is of the form

M =β λxx1 . . . xn. xM1 · · ·Mk,

for some M1, . . . ,Mk and n ≥ 0. When n = 0, we say that M is strongly regular.

It is easy to verify that both the set of regular and the set of strongly regular
λ-terms are closed under composition, and therefore each forms a semigroup, and
indeed a monoid since I is strongly regular.

Proposition 2.2. In the monoid of strongly regular terms:

(1) M is (right-) left-invertible iff M =β I.
(2) LI = RI = {I} and therefore HI = {I}.
(3) I is the unique idempotent.

Turning to regular terms, we characterise regular idempotents.

Lemma 2.3. Let E := λxx1 . . . xk.xP1 · · ·Ph be a regular term. Then E is idem-
potent iff k = h and for each i = 1, . . . , k, Pi[x1 := P1, . . . , xk := Pk] =β Pi.
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Moreover,

Proposition 2.4. In the monoid of regular terms we have:

(1) M is right-invertible iff M is strongly regular;
(2) M is left-invertible iff M = λxy1 . . . yn.x for some n;
(3) LI = {M : M =β λxy1 . . . yn.x for some n}, RI is the set of strongly regular

terms, and therefore HI = {I}.

Example 2.5. Let Y := λf. (λx. f(xx)) (λx. f(xx)) denote the well-known fixed-
point combinator, and let 2 := λfx. f(fx) denote Church’s numeral for 2. Then
the term λxy. x(Y2y) is a regular idempotent. More complex examples of regular
idempotents can be constructed using the [1, 6.5.2. Multiple Fixed Point Theorem].

As in the strongly regular case, the H-class of I in the monoid of regular terms
remains trivial. However, it will be shown in Theorem 3.4 below that there exist
regular idempotents E such that HE is a nontrivial group.

Another important and promising class of λ-terms to consider is that of lin-
ear λ-terms. Linear λ-terms are of special interest because they enjoy desirable
computational properties–most notably, strong normalisation–and this often leads
to well-behaved semantic behaviour. We recall that the typing system of linear
λ-terms corresponds to the implicative fragment of multiplicative linear logic [3].

Example 2.6. Examples of linear idempotents are 1 := λxx1.xx1, and its generali-
sations 1n := λxx1 · · ·xn.xx1 · · ·xn for all n ≥ 0.

A particularly rich subclass of linear λ-terms is formed by the η-expansions of the
identity that are the terms βη-equivalent to I. This subclass has been investigated
by Intrigila and Nesi in [5]. They focused on the subset ΛI

η of finite η-expansions
of I. They established that composition in this subset corresponds, at the level
of Böhm trees, to the union operation. As a consequence, they get the following
result, where ΛI

η(n, h) is the set of all those η-expansions of I such that the maximum
outdegree of their nodes is n and the maximum depth of their leaves is h.

Proposition 2.7.

(1) [5, Corollary 2] ΛI
η is a commutative idempotent monoid with unit I.

(2) [5, Proposition 3] ΛI
η(n, h) is a finite submonoid of ΛI

η.

In a commutative monoid, Green’s relations L, R, and H all coincide–greatly
simplifying the analysis of the semigroup’s internal structure.

Another important subclass of linear terms is the set FHP of finite hereditary
permutations. FHP consists of those linear λ-terms, whose Böhm tree results from a
(finite) η-expansion of I by permuting around the branches (see [2, Definition 9.61]).
By [1, Theorem 21.2.21] a λ-term M is βη-invertible (i.e., M ◦X =βη X ◦M =βη I
for some X) iff M ∈ FHP.

Proposition 2.8. FHP is a monoid with unit I.

3. Groups in lambda calculus

We now give a characterisation of the largest monoid with unit 1n, whose group
H1n

of invertible elements is isomorphic to the group of all permutations of n
elements. In this section λ-terms are considered up to β-equivalence.
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We say that a λ-term M is n-invertible if there exists X such that M ◦ X =
X ◦ M = 1n. Let σ be a permutation of {1, . . . , n}. Then the term M =
λxy1 . . . yn.xyσ1 . . . yσn is called a permutation of 1n. We denote by Permn the
set of permutations of 1n.

Lemma 3.1. The permutations of 1n are n-invertible and constitute a group under
composition with unit 1n.

We now characterise the λ-terms M such that 1n ◦M = M = M ◦ 1n.

Definition 3.2. Let N ∈ Λ(x). We say that λx.N is n-good if, for every leaf node
γ in the tree representation of N such that N(γ) = x, there exists a prefix δ of γ
such that the subterm t of N of root δ has the form t = xY1 . . . Yr with r ≥ n.

Lemma 3.3. Let n ≥ 0 and M be a closed λ-term. Then we have:

(1) 1n ◦M = M iff M has order > n (i.e., M =β λxx1 . . . xn.N).
(2) M ◦ 1n = M iff M is n-good.

Let n ≥ 0. We define: Gn to be the set of closed λ-terms that are n-good of
order > n. We say that a λ-term λx.M is head-linear if x occurs free exactly once
in M . We define LRn to be the set of closed terms M such that M is a head-linear
regular term of order > n and branching ≥ n (i.e., M =β λxy1 . . . ym.xM1 . . .Mk

with m, k ≥ n). We can then state the most important result of this section.

Theorem 3.4. Let n ≥ 0.

(1) Gn is a monoid under composition with unit 1n;
(2) LRn is a submonoid of Gn.

In both Gn and LRn, the group Permn is the H-class of the idempotent 1n.

As every finite group can be embedded in a group of permutations,

Corollary 3.5. For every finite group G, there is n for which (Gn, ◦,1n) is the
largest monoid with unit 1n and G embeds into the group H1n

of invertible elements
of Gn.

4. Statman’s Theorem

We conclude this abstract by presenting some consequences of the aforemen-
tioned theorem by Statman [9]. We say that a set X of λI-terms of order 0 is
independent if, for every M ∈ X no β-reduct of M contains a β-reduct of any
member of X as a proper subterm. For example, the set of terms {Ωn : n ∈ N},
where Ω := (λx.xx)(λx.xx) and n is the Church numeral for n ≥ 1, is independent.

Let X be a fixed countable independent set of λI-terms. We denote by X∗ the
set of words over the alphabet X. The interpretation of concatenation of words in
the λ-calculus is given by composition. In λβ distinct words cannot be equated:

Lemma 4.1 ([9]). If P,Q ∈ X∗, then P =β Q iff P and Q are the same word.

Proposition 4.2. The free semigroup with a countable set of generators can be
embedded into the semigroup (Λβ , ◦). Therefore, the semigroup (Λβ , ◦) generates
the variety of semigroups.

Lemma 4.3. In the semigroup (Λβ , ◦) we have HP = {P} for every word P ∈ X∗.

Definition 4.4. We say that a λ-theory T is an sgλ-theory if T is axiomatised by
identities between words in X∗.
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If T is an sgλ-theory, then we denote by sg(T) the equational theory in the language
of semigroups axiomatised by the identities between words axiomatising T.

Lemma 4.5. [9, Lemma 12] Let T be an sgλ-theory and P,Q ∈ X∗. Then T `
P = Q iff sg(T) ` P = Q.

Theorem 4.6. [9, Theorem 13] The semigroup (Λβ , ◦) is SQ-universal, i.e., every
countable semigroup can be embedded into the semigroup of the term model of a
suitable sgλ-theory.

Corollary 4.7. The algebraic lattice of equational theories of semigroups is iso-
morphic to the algebraic lattice of sgλ-theories.

The join of two sgλ-theories in the lattice of sgλ-theories coincides with the join
of these λ-theories in the lattice of all λ-theories, while the meet does not in general.

5. Conclusions and vistas

At the beginning, we outlined two main goals for this project. Regarding the
first–the search for groups within λ-calculus–we are currently working on a gen-
eralisation of some results of Section 3 to the case of an arbitrary η-expansion of
I in place of 1n. As for the second goal–developing invariants of λ-theories via
semigroup theory–further work is still needed. To each λ-theory T we can associate
the variety of semigroups generated by (ΛT, ◦). Further, we can define a preorder
on λ-theories setting T < T′ if the variety of T′ is contained in that of T. A charac-
terisation of the order on the equivalence classes associated to the preorder would
be illuminating. Note that if T ⊆ T′, then T < T′ and the lattice of λ-theories gets
flattened into this preorder. Finally, we mention that there are other operations
than composition that make the set of λ-terms into a semigroup [9, Section 2].
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