
Drifter;Graphs : a dynamically-sliced model for Additives

Valentin Maestracci

May 28, 2025

Linear realisability [6] is a research program in the continuation of Geometry of
Interaction, where logic is studied from the point of view of models of computation.
Many such models of computation have been defined (ludics, flows, stellar resolution...),
in particular the family of interaction graphs. We define a new type of interaction graph:
drifter graphs, that is designed to handle additives in a finer way than the regular
construction. We do so in a new framework, using diagrams, that allows to unify all
models of these family as similar constructions.

1. Interaction Graphs

Interaction Graphs are a model of geometry of interaction introduced by Seiller in [5]. They
generalize another model, the model of permutations which encodes proofs nets of Multiplicative
Linear Logic as permutations [1], and the dynamic of cut elimination by making permutation acts
on atoms and following where they end up. Interaction Graphs generalize this by considering
arbitrary graphs:

A A⊥ 1 2 1 2

Ax (12) G

Notation 1 We note ⊖ the symmetric difference of sets.

We assume given a set C of colors.

Definition 1 (Colored (Directed) Graph) A colored directed graph is a directed graph (V,E, s, t)
equipped with a painting function p : E → C. We say that a graph is n-colored when |C| = n.

Definition 2 (IG) An interaction graphs is a 1-colored directed graph. We say an interaction
graphs G it is at (location) L when VG = L. We will write (IG)L to designate the set of interaction
graphs at L and more generally SL for any set S ⊆ (IG)L of interaction graphs at L.

This definition is not the standard definition of interaction graphs, but it is easily verified to be equiv-
alent. We will define in here a simple generalization called bicig (standing for bicolored interaction
graphs). Beforehand, we define how graphs interact, as to define a model of computation.

2. Diagrams

We will try to compute paths in the graph. Those that are of interest to us will be the alternating
paths, which corresponds to an alternation between axioms and cuts. This is the reason we
introduced colors: an alternating path will be a path in which the color changes at every edge. We
introduce the notion of diagram, which will correspond to said path. This notion might seem a bit

1

of an overkill for this purpose, but the abstract definitions we introduce here can be used to define
other model of computation (flows, stellar resolution, etc.), where they are necessary, and providing
a uniform "framework".
Diagrams will represent an attempt at a composition of our elementary objects, here edges. (Which
might fail, if the source and targets do not match.)

Definition 3 (Diagram) A diagram δ on a directed graph G is the data of a graph H, called the
shape of δ, whose connected components are linear, that is of the shape − → . . . → − and with at
least one edge. And a function δ : EH → EG, selecting an edge of G to be "above" every edge of H.
(Note how we conflate the name of the diagram and the name of said data).
We will thus write such shapes as − e→ − to indicate that δ(eH) = e ∈ G.
Note how linearity implies that between two vertex v, w there is at most one arrow. We will write
v → w to designate this arrow (and implicitly assuming it exists). We will sometimes write v → −
when we do not want to name of the vertices.

Remark 1 In a non connected diagram, the fact that there are multiple connected components
could be interpreted as doing "attempts" at computing paths in parallel.

Definition 4 (Boundary of a Diagram) Given a diagram D, its source boundary is the set
(∂δ)s := {v ∈ Vδ | there is no e with t(e) = v}. Similarly, its target boundary is the set (∂δ)t defined
as {v ∈ Vδ | there is no e with s(e) = v}. Its boundary ∂δ is the union s(∂δ)s ⊔ (∂δ)t (disjoint since
there is no lonely vertex). Its located boundary (∂δ)loc is defined as {s(δ(v → −))} ∪ {t(δ(− → v))}.

Definition 5 (Interior of a Diagram) Given a diagram δ, we define its interior δo as the set
{v ∈ Vδ | − → v → −}. We define its located interior as (δo)loc :=

{
t(δ(e)), s(δ(e′))

∣∣∣ − e→ v
e′→ −

}
.

Definition 6 (Equation) Given a vertex v in a diagram such that . . . e→v
e′→ . . . , define the equa-

tion at v as the equation eq(v) := t(e) ?=s(e′). This tests wether the arrows are compatible or not. This
can be extended to any set V immediately to get an unification problem: eq(V) := {eq(v) | v ∈ V }.

Definition 7 (Locativity: On Location and Saturation) Given L a set of locations, a dia-
gram δ is said to be on L when (δo)loc ⊆ L. A diagram is L-saturated when (∂δ)loc ∩ L = ∅. We
write DiagsL(G) the set of diagrams of G that are on L and L̄-saturated.

Note 1 Notice that saturation formalises the fact that one cannot compose by an edge anymore.

Definition 8 (Compatible) A diagram δ is said to be compatible when eq(δo), seen as a unifica-
tion problem, has a solution.

Note 2 Notice that in the context of graphs we are considering, compatibility only means that all
equations are equalities, as unification is not really used.

Definition 9 (Alternated Diagram) A diagram δ for a graph G is said to be alternated when
for all e, f in configuration − e→− f→−, p(e) ̸= p(f) in G.

Definition 10 (Correction) A diagram δ is said to be correct when it is compatible, connected,
and alternated. We write CDiagsL(G) for the subset of DiagsL(G) of correct diagrams of G. We
write ⇓ δ (the reduction of delta) for the edge e0; . . . ; en (here it is just a formal path, but in later
consideration there will be a composition of arrows).

Proposition 1 (Overkill) A correct diagram, in the case of interaction graphs, is exactly an
alternated path.

The point of this notion was to introduce the notion of saturated diagrams: these describes paths
inside the cuts that have endpoints outside of it.

2

3. How to compose programs / graphs, and dynamics

Execution between two graphs amounts to computing the alternating paths in a graph obtained by
glueing the two graphs together.

Definition 11 (Glueing) Given two graphs F,G of disjoint colors, one can define the colored
directed graph G^F as their (non necessarily disjoint!) locative union, that is:

G^F := (VG ∪ VF , EG ⊔ EF , sG ⊔ sF , tG ⊔ tF) (1)

The coloring is given by p = pF ⊔ pG (this is why we need disjoint colors). Notice this is not an
interaction graphs (it has two colors). More generally, we can define a glueing of graphs for an
arbitrary (albeit with different colors) set of graph.

The main result we want to prove is associativity of execution (confluence): Ex(Ex(A,B), C) =
Ex(A,B,C) = Ex(A,Ex(B,C)), which also involves the glueing of three graphs (which has three
colors). It is thus convenient to directly consider colored graphs as the computational notion in
itself.
There is a problem considering simple colored graphs if we want to be able to do "progressive
reductions", like a small step semantics. Imagine composing the two edges in the following graph:

1 2 3 4 5

Red Red Blue Blue

What color should the resulting arrow have? Adding a fresh color would not help, because we need
to remember that we cannot compose with red on one side, and blue on the other. We thus need
to consider edges that are bicolored. The philosophy that we apply to our construction is that
somehow there should be no difference between an edge (reduced diagram) and a diagram.

Definition 12 (Bicolored Interaction Graphs (bicig)) A bicig is a directed graph equipped
with a painting function p : E × {s, t} → C.

Notice that mono-colored bicig correspond exactly to interaction graphs. We are thus going to
generalize the previously defined constructions to the bi-colored case.

Definition 13 (Alternating Paths in bicig) A path in a bicig is said to be alternated when
p(ei)(t) ̸= p(ei+1)(s).

Definition 14 (Execution of a bicig) Given a bicig G and a set of locations L, define ExL(G)
by letting:

VExL(G) = LG ∩ L̄, EExL(G) = ⇓ CDiagsL(G),

with obvious s and t maps, and coloring function pExL(G) : e, x ∈ E × {s, t} → pG(x(e))(x).

Logically, this amounts to consider L as the set of locations within cut formulas and performing
cut-elimination.

Note 3 Note for interaction graphs, coloring G with color G and H with color H, we have
Ex(G,H) = ExLG∩LH (G^H) (forgetting the colors on the right). This show that this a first step
toward a sort of microscopic decomposition of the execution formula, where one could compute cuts
independently

Proposition 2 (Church-Rosser) When L ∩K = ∅, we have the Church-Rosser property:

ExL(ExK(H)) = ExL⊔K(H) = ExK(ExL(H)).

3

1 2 3 4

G

H
1 4

Ex(G,H)

(12)(23)(34)

(12)(23)(32)(23)(34)

...

(12)(23)((32)(23))k(34)

Figure 1: Two graphs and their execution

Proposition 3 ((Classical) Associativity of Execution) When LA ∩ LB ∩ LC = ∅, we have:

Ex(Ex(A,B), C) = Ex(A,B,C) = Ex(A,Ex(B,C)).

With explicit locations1: Ex
LA⊖LB⊖LC

(A,B,C) = Ex(LA⊖LB)∩LC
(ExLA∩LB (A,B), C).

Remark 2 (Comparison of this approach with the traditional one) This approach with di-
agrams is of a more "dynamically located" nature: we attempt to compose edges at runtime to
compute a path, but composition might fail. The traditional approach is more "statically located": the
edges are already drawn on the paper at the right locations at "compile time", and we just compute
the paths inside the geometric graph. There is a way to get the "best of both worlds" through a
notion called "dependency graph".

4. Drifter Graphs: A new model of additivity and thickness

Traditionally, additives are handled via a slice construction. We follow a construction similar in
spirit but different in its execution that solves some (although not all) of the problems of the usual
slice constructions. We will directly perform the construction corresponding to "thick graphs" [4]
here, that is additive but with arrows that can go from a slice to another. The purely additive
construction can be deduced from this one.

Definition 15 (World Lines) In this section, we are given a set Wl called the set of world lines
(this is similar to the set of indices for the additive slices). A worldline is an element of Wl.

Definition 16 (Tracker) A worldline-tracker, abbreviated as tracker is a partial function C ⇀ Wl.
Those are used to keep track of which worldline we are exploring in each graph. (Note how a color
is unique to a graph, so it is used as an "identity card" for it).

We now define some operations on trackers:

Definition 17 (Coherence of trackers) We say that two trackers T, T ′ are coherent on S a set,
written T ¨S T ′, when ∀u ∈ S, T (u) = T ′(u) whenever they are both defined. In particular we
write T ¨ T ′ to say T ¨dom(T)∩dom(T ′) T

′.

We now introduce the model of computation that we are interested in.

Definition 18 (A drifter bicig) A drifter bicig is a bicig with the additional data of a function
T : E × {s, t} → (C → Wl). It will be used to track worldlines along time (composition of arrows).

Notation 2 (Guarding and Drifting trackers) We will write Gi for trackers of T (−, s), be-
cause they will be used as "guardians", to check wether it is consistent to take an arrow or not
when following a path. (We must check that arrows were in the same "slice".) Their composition
will be called fortification. We will write Di for trackers of T (−, t), because they will be used to
"drift" from the current worldline (change of slice). Their composition will be called overwritting.
Both fortification and overwriting are actually just "special cases" of an operation called overriding,
defined below.
1The other equality follows by symmetry.

4

Intuition 1 When following a path inside the graph, we will keep track of the different worldlines
that each programs are in, in a linetracker T0. To accept a new edge e, we will require that
T0 ¨ G0 := T (e, s), that is, in the current worldline, we can indeed use e. We will then update T0
to a T1, with the data of D0 := T (e, t), which will allow us to change worldlines.

To do all that, we need to understand how to compose arrows:

Definition 19 (Compatible Arrows) A pair of arrows:

• • •
G0|D0 G1|D1

is timeline coherent (or compatible) when D0 ¨ G1 and G0 ¨D̄0
G1. That is: D0 passes the test

of G1, and the tests that are not overwritten by D0 in G0 are compatible with those in G1; if not
then one could not pass both.

Definition 20 (Overriding) Given trackers G0, D1, G1, we define the partial overriding operation
(defined when said trackers come from compatible arrows as in the previous definition)

G1 <<D1 G0 : u →
{
G1(u) if u ∈ dom(G1) ∩ dom(D1)
G0(u) otherwise

Definition 21 (Composition of Arrows) When two arrows are compatible, their composition
is defined as

• •
G1<<D0G0|D0<<D1

Intuition 2 To drift, one drifts along D0 and then along D1, which might override what D0 did.
To guard, one must pass first the test of G0, then if a worldline is not overridden by D0 we test it
with G1, explaining why the composition is in reverse.

Proposition 4 (Associativity of Composition / Overriding) Given trackers G0, G1, G2 and
D0, D1, we have:

G2 <<D0<<D1 (G1 <<D0 G0) = (G2 <<D1 G1) <<D0 G0

This might not look like an associativity from the overriding point of view, since there is an extra
D0 << D1 term, but it actually is an associativity from the composition of arrow point of view.
We now have all the ingredients needed to define timeline correctness.

Definition 22 (Timeline Correctness) A diagram δ = v0
e0→v1

e1→· · · vn is said to be timeline
correct when the composition e0; . . . ; en−1 is defined.

Definition 23 (Correct Diagram) A diagram for a drifter bicig is correct when it is correct in
the sense of bicig and timeline correct.

If a diagram is correct, then we can compose its arrows both from the point of view of usual
locativity and of the timeline, we can thus define an actualisation:

Definition 24 (Actualisation) Suppose given a diagram δ = v0
e0=G0,T0→ v1

e1=G1,T1→ · · · vn+1 and
let e = G,T = e0; . . . ; en−1; that is, T := T0 << T1 << . . . and G := Gn <<Tn−1 Gn−1 Then
the actualisation of δ is ⇓ δ := v0

e=G,T→ vn+1.

From these definitions we can reprove everything that was defined for bicig (associativity and
lemmas) keeping the same definitions.

5

A. Appendix: What problem do Drifter Graphs Solve?

They do not solve the "problem of additives": by that we mean the fact that when doing a cut of
Γ ⊸ A&B on a A⊕B ⊸ ∆ coming from an A, the part internal to Γ in the slice of B appears as
a form of "leftover" after execution. This is dealt with by Seiller by showing that these leftovers are
"invisible" from the point of view of interaction, and thus can be quotiented out. [3] This was also
dealt with by Hamano [2] which used a "global" approach to slices, which allowed to erase a slice
that is not where interaction is happening.
But they do solve a problem that the additive construction of Seiller has: the one of "empty
slices".
Consider the contraction program (on the left) against a simple program (right):

1 2 3 4 5 6

1 2 3 4 5 6
G

1 2
H

This normalizes to a graph with an empty slice:

3 4 5 6

3 4 5 6
G :: H

But in the case of drifter graphs (we represent only the relevant edges here, and we do a monocolor
consideration) this "slice" would disappear, as in:

1 2 3 4 5 6

1 | 1
1 | 2

1 | 1
2 | 1

1 | ⊥

(a) A blue graph against contraction

3 4 5 6
1, 1 | 1 1, 1 | 1

(b) The result of execution

And thus any mention of the worldline 2 has disappeared: this is because 1|2; 2|1 gives 1|1.

References
[1] Jean-Yves Girard. “Multiplicatives”. In: Logic and Computer Science: New Trends and Appli-

cations. Ed. by G. Lolli. Rosenberg & Sellier, 1987, pp. 11–34.
[2] Masahiro Hamano. “A MALL Geometry of Interaction Based on Indexed Linear Logic”.

In: Mathematical Structures in Computer Science 30.10 (Nov. 2020), pp. 1025–1053. url:
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-
science/article/mall-geometry-of-interaction-based-on-indexed-linear-logic/9
4895D6D28B8CD45F314E2D21CD9C7B9 (visited on 05/20/2025).

[3] Thomas Seiller. “Interaction Graphs: Additives”. In: Annals of Pure and Applied Logic 167.2
(Feb. 1, 2016), pp. 95–154. url: https://www.sciencedirect.com/science/article/pii
/S0168007215000998 (visited on 03/17/2025).

[4] Thomas Seiller. “Interaction Graphs: Exponentials”. In: Logical Methods in Computer Science
Volume 15, Issue 3 (Aug. 30, 2019). url: https://lmcs.episciences.org/5730 (visited on
03/17/2025).

6

https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/mall-geometry-of-interaction-based-on-indexed-linear-logic/94895D6D28B8CD45F314E2D21CD9C7B9
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/mall-geometry-of-interaction-based-on-indexed-linear-logic/94895D6D28B8CD45F314E2D21CD9C7B9
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/mall-geometry-of-interaction-based-on-indexed-linear-logic/94895D6D28B8CD45F314E2D21CD9C7B9
https://www.sciencedirect.com/science/article/pii/S0168007215000998
https://www.sciencedirect.com/science/article/pii/S0168007215000998
https://lmcs.episciences.org/5730

[5] Thomas Seiller. “Interaction Graphs: Multiplicatives”. In: Annals of Pure and Applied Logic
163.12 (Dec. 1, 2012), pp. 1808–1837. url: https://www.sciencedirect.com/science/arti
cle/pii/S0168007212000759 (visited on 03/17/2025).

[6] Thomas Seiller. “Mathematical Informatics”. thesis. Université Sorbonne Paris Nord, June 18,
2024. url: https://theses.hal.science/tel-04616661 (visited on 03/17/2025).

7

https://www.sciencedirect.com/science/article/pii/S0168007212000759
https://www.sciencedirect.com/science/article/pii/S0168007212000759
https://theses.hal.science/tel-04616661

	1 Interaction Graphs
	2 Diagrams
	3 How to compose programs / graphs, and dynamics
	4 Drifter Graphs: A new model of additivity and thickness
	A Appendix: What problem do Drifter Graphs Solve?

