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One of the benefits of a fully abstract denotational model is that it gives information about how
the addition of new primitives to the language will affect contextual equivalence: indeed, as soon as
we are able to give in this model an interpretation for a new primitive that extends the interpretation
of the original language, we know that this new construct can be added while preserving contextual
equivalence. In this work, we are concerned with randomised extensions of PCF, meaning that
we want to extend the language with probabilistic choices. The simplest way to do so is to add a
primitive random(p), where p ∈ Q, that has Boolean type and that returns true with probability
p, and false with probability (1 − p): following [EPT18], we will note PCFp for this version of
randomised PCF. A fully abstract model is known for PCFp: the model of probabilistic coherence
spaces (PCSs), first introduced by Girard [Gir04], and shown to be a fully abstract model of PCFp

by Ehrhard et al. [EPT18].
As a motivating example of more complex probabilistic primitives that could be added to PCFp,

let’s look at arbitrary Boolean samplers, i.e. agents that behave as boolean oracles with possibly an
internal state, and as a consequence may behave differently the n-th time they are called than the
first one: it means that while each call returns a Boolean, there is no guarantee that this is done by
independent samplings along an identical probability distribution1. We call Bernoulli samplers the
uniform samplers, i.e. the ones where there exists a (sub)-probability distribution µ on {0, 1} such
that each call consists merely in sampling independently from the distribution µ. Let’s now consider
a program M of type (Bool → N) in PCFp: since the evaluation strategy is call-by-name, during the
evaluation of the program (M)N , the Boolean program N will be evaluated as many times as M
uses its argument. It can been shown either by operational or by denotational means that for every
PCFp program N of type Bool, N models a Bernoulli sampler. The motivating question for this
work is to know which – if any – other kinds of samplers can be interpreted denotationally in the
model of probabilistic coherent spaces, in a way which is compatible with the existing interpretation
for PCFp.

Since the category of probabilistic coherence spaces (PCoh) is a model of Linear Logic, a PCFp-
program ⊢ M : Bool → σ is interpreted as a morphism JMK ∈ PCoh(! JBoolK , JσK), where ! is
the exponential modality of Linear Logic. In the following, let us note simply Bool for the PCS
JBoolK. We would like to interpret a boolean sampler S as a morphism 1 →!Bool, thus S could
be passed (in the denotational world) as argument to any program ⊢ M : Bool → σ. One simple
way of building morphisms 1 →!Bool – or more generally ! JΓK →!Bool is to use the promotion rule
of linear logic, that transforms any element x : 1 → Bool into an element x! : 1 →!Bool. In the
model of probabilistic coherence spaces, a probability distribution x on {0, 1} gives rise to an element
1 → Bool, whose promotion models exactly the associated Bernoulli sampler. So our objective can
be rephrased as understanding what other kind of elements live in PCoh(1, !Bool), and which kind
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1We consider Boolean samplers in this work, but our line of reasoning could be extended to natural number

samplers, or more generally samplers on ground data types.
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of samplers they models.
Our starting point is the fact that–as proved in [CEPT17]–the exponential comonad in PCoh

is characterised by the layered generic construction of the free exponential by [MTT18]. The core
of our work consists in building a close connection between this free exponential construction and
the currently very active line of work [JS20, MP22, FGP21] looking at categorical representations of
De Finetti’s theorem. Via this connection, we show that the samplers that can be added to PCFp

without altering contextual equivalence – or the denotational interpretation – are the exchangeable
ones: those for which it is impossible to detect a (finitely supported) permutation in the order of
the calls.

1 Categorical De Finetti theorems

De Finetti’s theorem is a foundational result from probability theory, that characterises the ex-
changeable infinite sequences of random variables on some measurable space X. Here, exchangeable
roughly means that for any finite prefix of the list, it is not possible to distinguish whether the vari-
ables have been permuted inside this prefix. An infinite list of independent, identically distributed
random variables (noted i.i.d.-sequence in the following) is obviously exchangeable, but the converse
isn’t true. De Finetti’s theorem says that, under some conditions on X, every infinite exchangeable
list of X-valued random variables s can be written as a mixture of i.i.d.-sequences. Let’s look for
instance at X = {0, 1}: this result means that the probability measures on {0, 1}ω that verify the
exchangeability requirement are in bijection with the probability measures over the set of Bernoulli
samplers, identified to [0, 1]. 2

More generally, let us note as usual G is the Giry monad, thus GX is the set of probability
distribution over X equipped with a structure of measurable space. De Finetti’s theorem says that
there exists a probability measure µ on GX such that the law of s–which is a probability measure
on Xω, the infinite product of copies of X–coincides with the probability measure obtained by first
sampling from µ an element x ∈ GX, and then taking an i.i.d.-sequence of law x.

Jacobs and Staton presented in [JS20] a categorical version of De Finetti’s theorem when X =
{0, 1}. Their setting is the symmetric monoidal category Stoch, where the objects are measurable
spaces, and the morphisms are the stochastic kernels. Jacobs and Staton’s formalisation is based on
the construction a chain in Stoch, that they call the draw and delete chain. For any measurable space
X, the objects this chain are the Mn (X) – the multisets on X of size exactly n – that represent urns
containing n elements. The morphisms are the dn : Mn (X) → Mn−1 (X) obtained by drawing at
random an element in the urn, and then removing it from the urn:

1 M1 (X) M2 (X) . . .
d2d1d0

(1)

From a categorical point of view, this chain can also be built from the more primitive discard chain,
whose objects are the X⊗n, and where the discard morphism X⊗n+1 → X⊗n arises from the fact
that 1 is also the terminal object. We can then obtain the draw-and-delete chain by observing that
the Mn (X) are the equalisers of the symmetries on X⊗n, and lifting the discard chain to the level

2De Finetti didn’t prove the modern form of De Finetti theorem, since he didn’t accept the Kolmogorov axioma-
tisation of probability theory–see for instance [BR+08, Fis86]. But it’s named after him because he proposed taking
exchangeable sequences of boolean random variables–that talk only about discrete probability theory, where there
was no controversy on the formalism–as foundations for probability theory on the continuous interval [0, 1].
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of equalisers.

1

1

M1 (X)

X

M2 (X)

X⊗2 . . .

. . .

eq0 eq1 eq2
d2d1d0

symm symm

X⊗2 × (·)X ⊗ (·)(·)

(2)

The law of an exchangeable infinite sequence of random variables on X can then be seen as a cone
from 1 to the draw-and-delete chain: the morphism 1 → Mn (X) is the law of the n first random
variables of the sequence. The fact that the multisets are the equalisers of the symmetries corresponds
to the exchangeability requirement. The categorical formalisation of De Finetti’s theorem proposed
by [JS20] is to state that GX should be the limit of the draw-and-delete chain. In particular,
the universal property applies to cones from 1, thus those arising from exchangeable sequences of
X-valued random variables, which corresponds to the usual De Finetti’s theorem.

A less stratified formalisation of De Finetti theorem [MP22, FGP21] has also been proposed by
Perrone et al. This version requires explicitly the existence of the infinite product Xω, axiomatised
categorically as the limit of the discard chain. Then instead of looking at the equalisers of symmetries
at each layers, Perrone et al.’s De Finetti formalisation is that GX should be the equaliser of all
finitely supported symmetries on Xω:

Xω . . . Xω ∀σ, σ′ permutations of N with
finite support.

σ

σ′

While Xω can always be defined as the infinite Cartesian product in Meas, its limit characterisation
in Stoch is a consequence of Kolmogorov’s extension theorem that does not hold in general for
measurable spaces–but hold for all standard Borel spaces, i.e. those measurable spaces whose σ-
algebra has been built as the Borel σ-algebra of a Polish space. This formalisation of De Finetti
theorem has been shown in the case where X is any standard Borel space, and also in a more general
case where Stoch is replaced by any Markov category.

2 The free exponential layered construction

Starting from a symmetric monoidal closed category C, there are several possible axiomatisations for
C to be able to model the exponential modality of Linear Logic, thus to be a model of (Intuitionistic)
Linear Logic [Mel09]. The strongest one, proposed by Lafont, consists in requiring the existence of
the free commutative comonoid generated by A–noted !A–for every object A of the category. When
it is the case, ! can be extended in a comonad that verifies all requirements for a categorical model
of Linear Logic. A layered construction is given in [MTT18] for the free exponential modality, that
applies to many–but not all– known Lafont models of linear logic. First, it asks for the existence,
for every A, of a cartesian product A• = A& 1. Secondly, it requires the existence of the equalisers
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of the symmetries on A•
⊗n for every n. This leads to the approximants chain:

A≤n

(A•)
⊗n (A•)

⊗n+1

. . . . . .

. . . . . .

1 A≤n+1

eq eq

(A•)
⊗n ⊗ π2

symm. symm.

(3)

As proved in [MTT18], the limit of this chain–when it exists, and when moreover the limit commutes
with the tensor product–is the free commutative comonoid generated by A, and thus gives a Lafont
model of Linear Logic. It has been proved in [CEPT17] by this method that the exponential modality
of probabilistic coherent spaces is indeed the free one.

3 Our results

From a formal point of view, there is a striking similarity between the draw-and-delete chain from
Section 1 and the approximants chain of Section 2, that reflects the fact that the question of ex-
changeability – and how to manage symmetries between different copies of a resource – is fundamental
in Linear Logic semantics. Technically, the only difference between the two chain constructions is
that 1 is not required to be the terminal object in [MTT18], and accordingly X⊗n in the draw-
and-delete chain is replaced by X•

⊗n in the construction of the approximant chain. The natural
place to explore this connection is the category of integrable cones (ICones) introduced by [EG25]
because both the category of stochastic kernels and the category of probabilistic coherent spaces can
be faithfully embedded there.

We now sum up the main contributions of our work:

• First, we showed that both chains can indeed be built in the category of integrable cones, and
that they indeed have for limit GX and !X respectively: for the draw-and-delete chain, we
proved this for any ICones-object X which is the image in ICones of a Standard Borel Space;
for the approximants chain, we proved this only for Bool, but we hope to be able to show it in
the future for at least all the X that are the image of standard Borel spaces. It’s interesting
to mention that in order to prove the limit of the draw-and-delete chain in ICones, we’ve
needed to show that the faithful functor from Stoch to ICones preserve both tensor product
and connected limits, which is a relevant result in itself, and also the more technically involved
part of our work.

• In a second part, we built a chain morphism that by the universal property of the limit gives
rise to a canonical morphism GX →!X, expressing the fact that any exchangeable sampler can
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be interpreted in !X:

1

1

Mn (X)

X⊗n

Mn+1 (X)

X⊗n+1 . . .

. . .

. . .

. . .

eq0 eq1 eq2

dndn+1

X⊗n+1 × (·)X⊗n ⊗ (·)

X≤n

(X•)
⊗n (X•)

⊗n+1

. . . . . .

. . . . . .

1 X≤n+1

eq eq

(X•)
⊗n ⊗ π2

(4)

It’s not possible to build an inverse to this chain morphism, and indeed there are some elements
in !Bool that aren’t the image of elements from GX.

• Finally, we showed that in the case X = Bool, all total elements – in the sense of the theory
of probabilistic coherence spaces with totality, see [EFP25] – in !Bool are in the image of
this morphism GBool ∼= [0, 1] →!Bool, thus that the total elements in !Bool are exactly the
exchangeable samplers.
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[Mel09] Paul-André Mellies. Categorical semantics of linear logic. Panoramas et syntheses, 27:15–
215, 2009.

[MP22] Sean Moss and Paolo Perrone. Probability monads with submonads of deterministic
states. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 1–13, 2022.
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