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1 INTRODUCTION

The semi-axiomatic sequent calculus (Sax) [DeYoung et al., 2020], a modification of the sequent calculus where
the noninvertible rules are turned into axioms, was introduced as a logical system that had a natural computational
interpretation for shared memory (futures) [Pruiksma and Pfenning, 2022] and message-passing [Pfenning and Pruiksma,
2023]. Sax satisfies only a weaker version of cut-elimination, where certain kinds of cuts, called snips, are preserved
because their inclusion does not break the subformula property. Somayyajula [2024] provides an alternative formulation
for Sax via a bidirectional typechecker.

In this work-in-progress we generalize from separate linear and nonlinear versions of Sax [Pfenning and Pruiksma,
2023] to an adjoint formulation that also integrates these and other modes like affine or strict. Unlike the adjoint Sax
presented in unpublished lecture notes [Pfenning, 2025], the typing rules presented here are bidirectional. Consequently,
our adjoint Sax with only snips will automatically satisfy the subformula property.

We further provide a compilation from (bidirectional) adjoint natural deduction [Jang et al., 2024] to bidirectional
adjoint Sax, which amounts to a translation to destination-passing style employing metalevel continuations. We prove
that bidirectional typing is preserved by the compilation. This translation is at the heart of a prototype compiler for

adjoint functional programs currently under development.

2 BACKGROUND

After linear logic was introduced by Girard [1987], where the structural rules of weakening and contraction are
controlled by the exponential modality, other substructural logics arose, such as Benton’s linear/non-linear system
[Benton, 1994]. LNL has linear and non-linear formulae, and linear and non-linear contexts. Adjoint logic [Pruiksma
et al., 2018] goes beyond this: instead of just two possible modes, linear and non-linear, there can be an arbitrary
pre-order < of modes m, each with its own set of allowed structural properties o(m). The principle of independence
requires that in a sequent I' - A, the mode m of each formula in T satisfies m > r. As in LNL, adjoint logic decomposes
the exponential modality into two explicit shifts between modes: the downshift l’fn Ay for k > m and the upshift
T Ap for m > n. Modes m can admit or not admit weakening and admit or not admit contraction. We use W € o(m)
to mean weakening is allowed at mode m and likewise C € o(m) for contraction. Adjoint logic was first formulated in
the sequent calculus, and then extended to natural deduction in Jang et al. [2024]. Since adjoint logic is intuitionistic,
we’ll freely go back and forth between propositions and types.

We present now the collection of valid types we use for both natural deduction (ND) and Sax. For the positive types,
we have the eager pair A,, ® By, (both elements in the pair must have the same mode m), the unit type 1, the (labelled)
sum type ®{f : A%}, with labels £ corresponding to the type A’ (all options must have the same mode m, and L must
be nonempty and finite), and the downshift L],‘n Ap. The downshift to m of some type of mode k is a type of mode m,

assuming k > m.
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For the negative types, we have the function type A,; — Bp, the lazy record type &{¢ : A% };c; (again with the
requirement that L is finite and nonempty), and the upshift T/ A, where m > n, which is a dual notion to the downshift.

The zero type is not a valid type here.

A, Bm :=Am ® B | 1m | ©{€: AL Yeer | 15, Ax (k = m)
| Am —o B | &{€: Al }eer | 10 An (m > n)

As an exercise, the reader can use the ® introduction and elimination rules and variable rule [Jang et al., 2024] to

show that the following adjoint ND expression swaps the elements of a term of type Ay, ® Bp,.
p: Am ® By +F match p with (x,y) — (y,x) &< By, ® Ap.

Natural deduction and the sequent calculus are known to prove the same theorems. A third proof system can be added
to the mix: the semi-axiomatic sequent calculus, a modification of the sequent calculus where the non-invertible rules
become axioms. A natural computational model of Sax is an imperative language whose processes write to destination
addresses that will be read by other processes [DeYoung et al., 2020].

Lecture notes [Pfenning, 2025] provide an adjoint type system for Sax, but it is not bidirectional in the sense explained
in detail by Dunfield and Krishnaswami [2022]. Cuts do not have to be snips, so the system does not satisfy the
subformula property. On the other hand, Somayyajula [2024] gives a bidirectional type system, but only for structural
Sax. Bidirectional typing for natural deduction applies only to the succedent—we assume the types for all variables
in scope are known (written x = A). In Sax, not only can the succedent either synthesize or be checked against, but
each antecedent can also either synthesize or be checked against. In the computational model of typechecking, the
latter means the variables in the context either have an a priori known type, or their type can be synthesized during the
typechecking process. Instead of the standard cut, we have snips, which synthesize the type of the allocated address
either in the first or the second premise. On the right of the turnstile, z < A will be used for checking destination
z against a known type A, and z = A for algorithmically synthesizing A for z. On the left, x = A will be used to
denote that x has known type A, while x < A stands for a type A we have to algorithmically synthesize. The symbol +

separates the process and the address it writes to.

T'tP(x)+(x <= A) ILx<=ArQ(x)+d& D

snipR
Trx 3 P(x); Q(x)+d <D

I'FP(x)+(x=A4A) I'x=>ArQ(x)+d&D L
snj]
T'tx«—  P(x); 0(x) +d<=D P
Sax with just these snips (and not the general cut) does satisfy the subformula property. However, the rules in

Somayyajula [2024] are not deterministic, that is, given some Sax expression and a type to synthesize or check against,
it is not deterministic which rule we must apply. In this paper we’ll be providing rules that are directly implementable

for a language that is adjoint (rather than just structural).
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3 BIDIRECTIONAL SAX

We will be focusing on adjoint Sax, so we’ll omit the typing rules for adjoint ND, which can be found in Jang et al.

[2024]. We’ll use e to denote an arbitrary expression of ND and s to denote a synthesizing expression, that is,
su=x|sel|s.k|s.force| (e:A)

We’ll use P, Q to denote processes using the read/write vocabulary of (shared) memory. Because we are not interested
in the dynamics in this paper, we do not formally distinguish between variables that stand for addresses, and addresses
as runtime objects. We tend to use a, b, ¢, d for variables free in a sequent, and x, y, z, w for variables bound in an
expression like a process. We further use t for metavariables, A, B, C, D for types, and k, m, n, r for modes. Our contexts
T, E will be formed as

Fu=+|T,(x &= An) | T, (x = Ap)

For our bidirectional typing rules for adjoint Sax, we use the “additive” system, where the context in which we type
a process will be the collection of all variables in scope, which will generally be denoted I'. Then, the typing judgment
returns the subset E of T of the variables used in the formation of the typing of that process.
The judgment
'+P+(ce=Cr) /B
means that in the context I of all variables in scope, the process P will write to the destination ¢ and will output the
context E of variables used in the typing, and if we check ¢ against Cy, it will succeed. We will also have the synthesis

judgment, which says that ¢ will synthesize C, in the used context =:
I'+P+(c=>Cr)/E.

Each right rule for a positive type in the sequent calculus becomes an axiom of Sax. We provide the Sax axiom rule
for the eager product below. The used context returned will be (a & Ap, b & By,) if a # b and (a < Ay,) if they are
the same and m admits contraction. Otherwise, the judgment fails. We denote this by (a & Ap; b < Bp).

as=An,b=B, el

®X
T + write ¢ (a,b) + (c = A ® By) / (a & A b < Bpy)

Note that algorithmically we would not already have A;, and By, in T for a and b, but would synthesize them from
Am ® By, in the succedent.
We also provide the left (invertible) rule for the eager product. We’ll use y, to mean some d < D, for mode r. By the
premise, we have = > r, but we’ll also need m > r for the rule to satisfy the principle of independence.
c=>An®By, el I'x = Am,y=>Bn+Px,y)~y/E m>r
T'rread ¢ ((x,y) = P, y) = vr / (E\xm \ Ym;c = Am ® By)

®L

We used two context operators above, join (;) and removal (\), defined by Jang et al. [2024]. The join operation was
described by example in the ®X rule, and allows x = Ay, ; x = Ay, only if mode m admits contraction (similarly for
). The removal operation = \ x,,, removes x of mode m (we annotate the mode by writing x,) from =, where it must
occur unless mode m admits weakening.

The following Sax process does not typecheck, because write d (x,y) synthesizes the types of x and y, when we

already have them in the context as x = Ay, and y = Bj,.

p&=An®Bpy Fread p ((x,y) — write d (x,y)) +(d = Am ®Bm) /| p = An®Bn
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It does typecheck in Somayyajula [2024], because he allows the left subtyping rule <L that unfortunately ruins

determinism.

A<B lLa=BrP=+y
<L
las=ArP+y
Instead, to keep determinism, we will allow arrow-direction switch only in the id rule. The process id a b copies the

contents of b to a.
b= By, el B < Am

idSub
T'tidab+(a<=An) /| b= By
We next provide the axiom and left rules for the downshift.
a&s= A el
X

I' + write c(a)+c<:llank/a<:Ak

c=>l’ank€I‘ ILx=ArFP(x)+y | E m>r

T +read ¢ ((x) > P(x)) =y / (E\x = Ap)ic = [K A t
For brevity, the last set of rules we’ll include will be the left rule and the right axiom for functions.
I'x=Ant+Pxy) ~(y=Bm) /E R
I'+write ¢ ((x,y) = P(x,y)) + (c = Am — Bm) /| (E\x = Ap)
c=>Am ©Bp,as=A, €T
I'+read c(a,b) + (b= Bm) / (c = Am — Bmsa < Ap)

—o X

4 COMPILATION TO SAX

Now, we sketch compilation of ND expressions into Sax processes. The compilation of a ND expression that is checked
against a type is provided a destination, written as [e]d. In brief, if e < Ay, then [e]d + (d < Ay,) (see Theorem 4.1).
The compilation of a synthesizing ND expression will be defined relative to a meta continuation K, written as [s]K. If
s=>Apandx = Ap +F K(x) + (d & Cr) then [s]K + (d & ).

For example, the compilation of a variable will be as follows.
[x]K = K(x)
Next, we consider eager pairs, which inhabit the type Ay, ® Bp,.
[(e1,e2)]d := x1 «—x [e1]x1; (x2 «—x [e2]x2; write d (x1,x2))

[match s with (x1,x2) < e]d == [s](At. (read t ((x1,x2) < [e]d)))
Then, the compilation of the ND expression that swaps the elements of an eager pair [match p with (x,y) — (y,x)]d

will be

read p ((x,y) > w e id w x; (z <y id z y; write d (w, 2))) .
Next, see the compilations of the ND introduction and elimination forms of downshift and functions.
[{e)]d := x «x [e]x; write d (x)
[match s with (x) < e]d = [s](At. read t ({x) < [e]d))
[Ax. e]d := write d ((x,y) < [e]y)
[s e]K := [s](At. x < [e]x; (y —r read t (x,y); K(y)))
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Now we can state our main theorem, making the intuition at the beginning of this section precise.

THEOREM 4.1.
(i) fT+e<=Apm /[ EthenT + [e]d + (d = Anm) | E (whereT and E consist only of a priori knowny = By)
(i) fTrs=>Am/E1andl,x = Ap+ K(x)+(d = Dy) | (x = Am ; E2) thenT + [s]K+(d & Dy) / (E1; E2)

Proor. By rule induction on the given ND derivation. O

5 CONCLUSION

We provided a bidirectional type system for adjoint Sax. Then we defined a compilation from adjoint natural deduction
that uses both destination passing style and a metalevel continuation. We proved this translation is type-preserving.

The continuations in the compilation are at the meta level, so we don’t create extraneous redices, but the moving
of the value from ¢ to d in [s]|d := [s](At. id d t) is at the object level. We do this to allow for subtyping and arrow
direction switch. Is it possible to avoid some of these moves without breaking the underlying principles?

It’s not immediately obvious with the limited number of rules provided, but the continuations all use their metavariable
linearly. Do these intermediate variables also satisfy a stack discipline as those for translation to continuation-passing
style [Danvy and Pfenning, 1995]? We conjecture that this is so.

With the context allowing both synthesis and checking, typing becomes highly nondeterministic unless we are strict
about when we can change directions for antecedents. The version of Sax we present is in fact very strict. It means that
many programs that might seem reasonable will not typecheck, and instead require some seemingly redundant snips. It
seems possible to allow an (implicit) change from synthesis to checking with a corresponding application of subtyping

in other rules besides the identity, but we have not yet developed the corresponding theory.
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