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Abstract

We introduce the LS
! -calculus, a linear lambda-calculus extended with scalar multiplication and term addition,

that acts as a proof language for intuitionistic linear logic (ILL). These algebraic operations enable the direct
expression of linearity at the syntactic level, a property not typically available in standard proof-term calculi.
Building upon previous work, we develop the LS

! -calculus as an extension of the LS-calculus with the ! modality.
A denotational semantics is provided in the framework of linear categories with biproducts. This work in progress
is part of a broader programme aiming to build a measurement-free quantum programming language grounded in
linear logic.

1 Introduction
The design of proof languages plays a central role in both logic and programming languages, particularly when
reasoning about resource usage and algebraic computation. Linear Logic [22] provides a framework for such rea-
soning, but its standard proof-term calculi do not make linear properties—such as distribution over addition or
scalar multiplication—explicit at the syntactic level. This lack of syntactic expressiveness limits its applicability in
settings like quantum computing, where linearity is not just a property but a fundamental constraint.

Linear Logic is named as such because it is modelled by vector spaces and linear maps, and more generally by
monoidal categories [5,6,21,25]. These types of categories also include the so-called Cartesian categories, generating
a formal place of interaction between purely algebraic structures and purely logical structures, i.e. between alge-
braic operations and the exponential connective “ !”. In the strictly linear fragment (without !), functions between
two propositions are linear functions. However, expressing this linearity within the proof-term language itself is
challenging. Properties such as f(u+ v) = f(u) + f(v) and f(a · u) = a · f(u), for some scalar a, require operations
like addition and scalar multiplication, which are typically absent in the proof language.

In [13] this challenge has been addressed by introducing the LS-calculus, a proof language for the strictly linear
fragment of intuitionistic linear logic (IMALL) extended with syntactic constructs for addition (+++) and scalar
multiplication (•). While the extension does not change provability, it enables the expression of linear properties at
the term level, such as distributivity of functions over sums and scalar multiplication. For example, any proof-term
t of A ⊸ B satisfies that t (u +++ v) is observationally equivalent to t u +++ t v. Similarly, t (a • u) is equivalent to
a • t u.

This extension involves changing the proof-term ⋆ of proposition 1 into a family of proof-terms a.⋆, one for each
scalar a in a given fixed semiring S:

⊢ a.⋆ : 1
1i(a)

The following two deduction rules have also been added:

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t +++ u : A

sum Γ ⊢ t : A
Γ ⊢ a • t : A

prod(a)

Incorporating these rules requires adding commuting rules to preserve cut-elimination. Indeed, the new rules
may appear between an introduction and an elimination of some connective. For example, consider the following
derivation.

Γ ⊢ A Γ ⊢ B
Γ ⊢ A&B

&i

Γ ⊢ A&B
prod(a)

Γ, A ⊢ C

Γ ⊢ C
&e1

1

https://arxiv.org/abs/2504.12128


To achieve cut-elimination, the prod(a) rule must be commuted either with the introduction or with the elimi-
nation, as shown below.

Γ ⊢ A
Γ ⊢ A

prod(a) Γ ⊢ B
Γ ⊢ B

prod(a)

Γ ⊢ A&B
&i

Γ, A ⊢ C

Γ ⊢ C
&e1

Γ ⊢ A Γ ⊢ B
Γ ⊢ A&B

&i
Γ, A ⊢ C

Γ ⊢ C
&e1

Γ ⊢ C
prod(a)

Both of these are reducible. We refer to the sum and prod(a) rules as interstitial rules, as they can appear in the
interstice between an introduction and an elimination. We choose to commute these rules with the introductions
as much as possible. This means we introduce the following commutation rule a • ⟨t, u⟩ −→ ⟨a • t, a • u⟩ instead
of the alternative rule δ1&(a • t, xA.u) −→ a • δ1&(t, x

A.u). This choice provides a better introduction property, for
example, a closed irreducible proof-term of a proposition A&B is a pair.

In [14] we extended the proof system to second-order intuitionistic linear logic, adding the exponential connective
and a universal quantifier. We proved that the linearity result still holds for second order.

In [17], which is the first journal version of [14], polymorphism has been removed to allow for a thorough study
of the ILL fragment. We provide a denotational semantics for this fragment of the language, which we refer to as
the LS

! -calculus.
While our primary focus is on introducing a minimal extension to the proof language within the realm of

intuitionistic linear logic, our work draws inspiration from various domains, particularly quantum programming
languages. These languages were trailblazers in merging programming constructs with algebraic operations, such
as addition and scalar multiplication.

Indeed, QML [1] introduced the concept of superposition of terms through the if◦ constructor, allowing the
representation of linear combinations a.u+ b.v by the expression if◦ a.|0⟩+ b.|1⟩ then u else v. The linearity (and
even unitarity) properties of QML were established through a translation to quantum circuits.

The ZX calculus [10], a graphical language based on a categorical model, lacks direct syntax for addition or
scalar multiplication but defines a framework where such constructs can be interpreted. This language is extended
by the Many Worlds Calculus [9] which allows for linear combinations of diagrams.

The algebraic lambda-calculus [26] and Lineal [4] exhibit syntax similarities with LS-calculus. However, the
algebraic lambda-calculus lacks a proof of linearity in its simple intuitionistic type system. In contrast, Lineal is
untyped and axiomatizes the linearity, relying on explicit definitions like f(u+v) := f(u)+f(v) and f(a.u) := a.f(u).
Several type systems have been proposed for Lineal [2, 3, 15, 16, 18]. However, none of these systems are related to
linear logic, and their purpose is not to prove linearity, as we do, but rather to axiomatize it.

One of the objectives of our line of research is to define a measurement-free quantum programming language
rooted in Linear Logic. Or, another way to state it, is to extend a proof language of Intuitionistic Linear Logic with
the necessary constructs to represent quantum algorithms. The LS-calculus was the first step in this direction [13].

In our conference paper [14], we introduced the LS
!∀-calculus as the second step, extending the language to

Second-Order Intuitionistic Linear Logic, where we can encode natural numbers, iterators, and more generally,
classical computing, apart from vectors and matrices for quantum computing. The LS

! -calculus is a minimal
extension of the LS-calculus, adding just the exponential connective. The next step is to add polymorphism to
the semantics, appealing to linear hyperdoctrines [23]. The LS

! -calculus is a step towards a quantum programming
language based on Linear Logic. Further steps include adding measurement, and restricting the language to unitary
maps following the techniques from [16].

2 The LS
! -calculus

2.1 Syntax and Typing Rules
The LS

! -logic is intuitionistic linear logic (we follow the presentation of FDILL [23], extended with the additive linear
connectives).

A = 1 | A ⊸ A | A⊗A | ⊤ | 0 | A&A | A⊕A | !A
Let S be a semiring of scalars, for instance {⋆}, N, Q, R, or C. The proof-terms of the LS

! -calculus are given in
Figure 1, where a is a scalar in S.

A judgement has the form Υ;Γ ⊢ t : A, where Υ is the non-linear context and Γ is the linear one. The
deduction rules are exactly the deduction rules of intuitionistic linear natural deduction, with proof-terms, with
two differences: the interstitial rules and the scalars (see Section 1). These three rules are shown in Figure 2.

The reduction rules are those of Figure 3. The first group of rules correspond to the reduction of cuts on the
connectives 1, ⊸, ⊗, &, ⊕, and !. The next two groups enable us to commute the interstitial rules sum and prod(a)
with the introduction rules of the connectives 1, ⊸, ⊤, and &, and with the elimination rule of the connectives
⊗, ⊕, and !. For instance, the rule ⟨t, u⟩ +++ ⟨v, w⟩ −→ ⟨t +++ v, u +++ w⟩ pushes the symbol +++ inside the pair. The
zero-ary commutation rules add and multiply the scalars: a.⋆+++ b.⋆ −→ (a+ b).⋆, a • b.⋆ −→ (a× b).⋆.

2.2 Linearity
The linearity results from [13] are trivially false when we consider the exponential connective. Hence, these results
refer to the original LS-calculus (Theorems 2.1 and 2.2).
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t = x | t+++ u | a • t
| a.⋆ | δ1(t, u) (1)
| λxA.t | t u (⊸)
| t⊗ u | δ⊗(t, xAyB .u) (⊗)
| ⟨⟩ (⊤)

| δ0(t) (0)
| ⟨t, u⟩ | δ1&(t, xA.u) | δ2&(t, xB .u) (&)
| inl(t) | inr(t) | δ⊕(t, xA.u, yB .v) (⊕)
| !t | δ!(t, xA.u) (!)
Introductions Eliminations Connective

Figure 1: The proof-terms of the LS
! -calculus.

Υ;∅ ⊢ a.⋆ : 1
1i(a)

Υ;Γ ⊢ t : A Υ;Γ ⊢ u : A

Υ;Γ ⊢ t +++ u : A
sum

Υ;Γ ⊢ t : A

Υ;Γ ⊢ a • t : A
prod(a)

Figure 2: Some of the deduction rules in the LS
! -calculus.

The set of vector types V is inductively defined as follows: 1 ∈ V, and if A and B are in V, then so is A & B.
To each proposition A ∈ V, we associate a positive natural number d(A), which is the number of occurrences of the
symbol 1 in A.

For each vector u in Sm, we can define a term uA, of type A ∈ V with d(A) = m.

Theorem 2.1 ([17, Theorem 2.20]). Let A,B ∈ V with d(A) = m and d(B) = n and let M be a matrix with
m columns and n lines, then there exists a closed proof-term t of A ⊸ B such that, for all vectors u ∈ Sm,
t uA −→∗ Mu

B.

Theorem 2.2 ([17, Corollary 2.24]). For any A and B, if ⊢ λxA.t : A ⊸ B, ⊢ u1 : A, and ⊢ u2 : B, then

(λxA.t)(u1 +++ u2) ∼ (λxA.t)u1 +++ (λxA.t)u2

(λxA.t)(a • u1) ∼ a • (λxA.t)u1

where ∼ is the computational equivalence.

3 Denotational semantics

3.1 The categorical construction
In this section, we introduce the fundamental categorical constructions that serve as the basis for defining the deno-
tational semantics of the LS

! -calculus. These constructions are inspired by the work of Bierman [7] on intuitionistic
linear logic. Many of the additive properties required for our setting have been established in a recent draft [20],
which develops a categorical semantics for the L⊙S-calculus [13], an extension of the LS-calculus incorporating the
non-deterministic sup connective ⊙. We adapt these constructions to incorporate the exponential connective !.

The first key definition is that of a linear category (Definition 3.1).

Definition 3.1 (Linear category [7, Definition 35]). A linear category consists of a symmetric monoidal closed cate-
gory (C,⊗, I) with finite products and coproducts, equipped with a symmetric monoidal comonad (!, ε, δ,mA,B ,mI),
such that:

1. For every free !-coalgebra (!A, δA) there are two distinguished monoidal natural transformations with compo-
nents eA : !A → I and dA : !A → !A⊗ !A which form a commutative comonoid and are coalgebra morphisms.

2. Whenever f : (!A, δA) → (!B, δB) is a coalgebra morphism between free coalgebras, then it is also a comonoid
morphism.

The next key ingredient is the notion of semiadditive category (Definition 3.2) and semiadditive functor (Defi-
nition 3.3).

Definition 3.2 (Semiadditive category [24, Chapter I, Section 18]). A semiadditive category is a category C
together with an abelian monoid structure on each of its morphism sets, subject to the following conditions:

1. The composition functions [B → C]× [A → B] → [A → C] are bilinear.

2. The zero elements of the monoids behave as zero morphisms.

Definition 3.3 (Semiadditive functor). Let C,D be semiadditive categories. A functor F : C → D is semiadditive
when the mapping of morphisms preserves the monoid structure.
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δ1(a.⋆, t) −→ a • t

(λxA.t) u −→ (u/x)t

δ⊗(u⊗ v, xAyB .w) −→ (u/x, v/y)w

δ1&(⟨t1, t2⟩, xA.v) −→ (t1/x)v

δ2&(⟨t1, t2⟩, xA.v) −→ (t2/x)v

δ⊕(inl(t), xA.v, yB .w) −→ (t/x)v

δ⊕(inr(u), xA.v, yB .w) −→ (u/y)w

δ!(!t, x
A.u) −→ (t/x)u

a.⋆+++ b.⋆−→ (a+ b).⋆ a • b.⋆−→ (a× b).⋆
(λxA.t) +++ (λxA.u)−→ λxA.(t+++ u) a • λxA.t−→ λxA.a • t
δ⊗(t+++ u, xAyB .v)−→ δ⊗(t, x

AyB .v) +++ δ⊗(u, x
AyB .v) δ⊗(a • t, xAyB .v)−→ a • δ⊗(t, xAyB .v)

⟨⟩ +++ ⟨⟩−→ ⟨⟩ a • ⟨⟩−→ ⟨⟩
⟨t, u⟩+++ ⟨v, w⟩−→ ⟨t +++ v, u+++ w⟩ a • ⟨t, u⟩−→ ⟨a • t, a • u⟩

δ⊕(t +++ u, xA.v, yB .w)−→ δ⊕(t, x
A.v, yB .w) +++ δ⊕(u, x

A.v, yB .w) δ⊕(a • t, xA.v, yB .w)−→ a • δ⊕(t, xA.v, yB .w)
δ!(a · t, xA.s)−→ a · δ!(t, xA.s) δ!(t+++ u, xA.s)−→ δ!(t, x

A.s) +++ δ!(u, x
A.s)

Figure 3: The reduction rules of the LS
! -calculus.

3.1.1 The category CS
!

We define the category CS
! (Definition 3.4), which will serve as the basis for the denotational semantics of the LS

! -
calculus. We make use of the following two facts: any category with biproducts admits a semiadditive structure [24,
Proposition 18.4] and its hom-sets carry a natural semiring structure [20, Corollary 3.4].

Definition 3.4 (The category CS
! ). Let S be a fixed semiring. We define CS

! to be a linear category with biproduct
⊕ where there is a monomorphism from S to Hom(I, I).

The following is an example of a concrete category with the properties stated in Definition 3.4.

Example 3.5. The category (SMS ,⊗,S,⊕), where objects are semimodules over the semiring S, arrows are
semimodule homomorphisms, the tensor product is the tensor product over semimodules and the biproduct is the
Cartesian product. This category is symmetric monoidal closed, and the semiring monomorphism is defined as
LaM = b 7→ a ·S b for every a ∈ S. The first model for the LS-calculus has been defined in this category [19]. We
can define a monoidal adjunction between SMS and Set, which induces a monoidal comonad, and it satisfies the
properties of a linear category.

3.2 Interpretation of the calculus
In this section, we define the interpretation of the LS

! -calculus in CS
! . We begin by introducing the interpretation

of types (Definition 3.6) and typing contexts (Definition 3.7). We then define the interpretation of the typing rules
(partially shown in Figure 4), where we use the following standard notation.
Notation. !∅ = ∅ !(xA,Γ) = x!A, !Γ ∅,Γ = Γ,∅ = Γ

Definition 3.6 (Interpretation of types).

J1K = I JA⊗BK = JAK ⊗ JBK J0K = 0 JA⊕BK = JAK ⊕ JBK
JA ⊸ BK = [JAK → JBK] J⊤K = 0 JA&BK = JAK ⊕ JBK J!AK = ! JAK

Definition 3.7 (Interpretation of typing contexts).

J∅K = I
r
xA,Γ

z
= JAK ⊗ JΓK

3.3 Soundness and adequacy
The soundness theorem (Theorem 3.8) states that the interpretation is stable by reduction.

Theorem 3.8 (Soundness). Let Υ;Γ ⊢ t : A. If t → r, then JtK = JrK.

The adequacy theorem (Theorem 3.11) states that equality of interpretation implies observational equivalence.
Observational equivalence (Definition 3.10) means that the proofs produce identical results in any elimination
context (Definition 3.9).

Unlike the standard notion of context, an elimination context is specifically designed to eliminate connectives:
a proof of an implication is applied, a proof of a pair is projected, and so on.
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s
Υ;Γ ⊢ t : A Υ;Γ ⊢ u : A

Υ;Γ ⊢ t+++ u : A
sum

{
= J!ΥK ⊗ JΓK ∆−→ (J!ΥK ⊗ JΓK)⊕ (J!ΥK ⊗ JΓK)

JtK⊕JuK−−−−−→ JAK ⊕ JAK ∇−→ JAK
s

Υ;Γ ⊢ t : A

Υ;Γ ⊢ a • t : A
prod(a)

{
= J!ΥK ⊗ JΓK

JtK−−→ JAK
L̂aM−−→ JAK

r
Υ;∅ ⊢ a.⋆ : 1

1i(a)
z
= J!ΥK ⊗ I

ρ−→ J!ΥK eΥ−−→ I
LaM−−→ I

s
Υ;∅ ⊢ t : A

Υ;∅ ⊢ !t : !A
!i

{
= J!ΥK ⊗ I

ρ−→ J!ΥK δΥ−−→ ! J!ΥK
!(ρ−1)−−−−→ !(J!ΥK ⊗ I)

!JtK−−→ ! JAK
s
Υ;∅ ⊢ t : !A Υ;∆, xA ⊢ u : B

Υ;∆ ⊢ δ!(t, x
A.u) : B

!e

{
= J!ΥK ⊗ J∆K

dΥ,∅,∆−−−−→ J!ΥK ⊗ J!ΥK ⊗ J∆K
JtK⊗id−−−−→ ! JAK ⊗ J!ΥK ⊗ J∆K

εA⊗id−−−−→ JAK ⊗ J!ΥK ⊗ J∆K σ−→ J!ΥK ⊗ J∆K ⊗ JAK
JuK−−→ JBK

Figure 4: Interpretation of some of the typing rules of the LS
! -calculus. The maps ∆ and ∇ are the diagonal and

codiagonal morphisms. The maps ρ and σ are the right unit and symmetry of the monoidal structure. â = ρ ◦ (id⊗
a) ◦ ρ−1 : A → A is the scalar map between arbitrary objects. The maps e_ and δ_ are generalisations of the counit
of the comonoid and the comultiplication of the comonad, respectively. The map d is a composition of the generalised
comultiplication map d_ and the coherence maps of the monoidal structure, that duplicates the banged contexts.

Definition 3.9 (Elimination context). An elimination context is a proof produced by the following grammar,
where _ denotes a distinguished variable.

K = _ | K u | δ⊗(K,xAyB .v) | δ1&(K,xA.r) | δ2&(K,xB .r) | δ⊕(K,xA.r, yB .s) | δ!(K,xA.r)

Notation. We write K[t] for (t/_)K, and _A ⊢ K : 1 means either _A;∅ ⊢ K : 1 or ∅;_A ⊢ K : 1.

Definition 3.10 (Observational equivalence). A proof ⊢ t : A is observationally equivalent to a proof ⊢ u : A
(written t ≡ u) if, for every elimination context _A ⊢ K : 1, we have

K[t] −→∗ a. ⋆ if and only if K[u] −→∗ a. ⋆ .

Theorem 3.11 (Adequacy). Let ⊢ t : A and ⊢ r : A. If JtK = JrK, then t ≡ r.

4 Conclusion and future work
We have introduced the LS

! -calculus, an extension of the LS-calculus with the exponential connective, allowing
non-linear functions and making it a more expressive language.

The LS-calculus was originally introduced as a core language for quantum computing. Its ability to represent
matrices and vectors (Section 2.2) makes it suitable for expressing quantum programs when taking S = C. Moreover,
by taking S = R+, one can consider a probabilistic language, and by taking S = {⋆}, a linear extension of the
parallel lambda calculus [8].

To consider this calculus as a proper quantum language, we would need not only to ensure algebraic linearity
but also to ensure unitarity, using techniques such as those in [16]. Also, the language LS can be extended with
a non-deterministic connective ⊙ [12], from which a quantum measurement operator can be encoded. We did
not add such a connective to our presentation, to stay in a pure linear logic setting, however, the extension is
straightforward.

In [14] the LS
! -calculus has been extended to include the second-order ∀ connective, preserving the linearity

properties. This extension allows us to use polymorphism to encode recursive structures in a usual way [22, Chapter
5], as shown in the following example. Given that we are in a linear setting, the exponential connective is essential
to achieve this.

Example 4.1. In the polymorphic extension of the LS
! -calculus, we can define natural numbers.

Nat = ∀X.X ⊸ !(X ⊸ X) ⊸ X zero = ΛX.λxX .λf !(X⊸X).x

succ = λnNat.ΛX.λxX .λf !(X⊸X).δ!(f, g
X⊸X .g) (n X x f)

We can express the application n times of a square matrix over a vector as follows, where A ∈ V with d(A) = m.

Miter = λnNat.λm!(A⊸A).λvA.n A v m

Let M be a square matrix with m columns and lines, and t be the closed proof-term of A ⊸ A representing such
a matrix. For any vector u ∈ Sm we have Miter n̂ !t uA −→∗ Mnu

A, where n̂ is the encoding of n ∈ N.

We are currently working on extending the categorical semantics to this polymorphic extension, using hyper-
doctrines [11] and following the approach of [23].

Acknowledgments We thank the anonymous reviewer who found a flaw in one of the reduction rules. This
version of the abstract is corrected, and the draft [17] will soon be updated.
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