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A central question in the study of higher-order programming languages is that of program equiv-
alence: when can two syntactically different programs be considered as equivalent? For instance,
when applying a program transformation for optimisation purposes, it is important to ensure that the
transformed program remains, in some sense, equivalent to the original. A widely accepted definition
is contextual equivalence, introduced by Morris in 1969 [Jr.69]: two programs are deemed equiva-
lent when they behave identically in all possible contexts. This definition is made self-contained by
modelling contexts as programs written in the same language:

M ~ N if and only if VC context, Obs(C[M]) = Obs(C[N]),

where Obs(-) refers to a notion of observable behaviour: for pure lambda-calculus, for instance,
a natural choice of observation is whether a program terminates. In this work, we are inter-
ested in probabilistic higher-order programming languages, where the notion of observation becomes
intrinsically quantitative: for instance we might define Obs(M) € [0,1] as the probability that
M terminates. In such a quantitative setting, it becomes natural to look at quantitative refine-
ments of program equivalence, with the aim of expressing that two non-equivalent programs are
nonetheless very close, in the sense where they behave similarly with high probability. This mo-
tivation led to the introduction of the notion of distances for randomised programming languages
[CLI54l [CL15b, [CLIT, [Ehr22l [LHP23]. In the same spirit, quantitative notions have been developed
in computational security [CL15al BK22|, where two programs are said to be computationally indis-
tinguishable if no admissible adversary can tell them apart with more than negligible probability.
Program distances have also been studied in the context of differential privacy [dAGHK19].

Unlike equivalence, however, there is no universally accepted definition of contextual distance.
A naive generalisation of contextual equivalence, as proposed in [CL15bh], would be to measure the
maximum observable difference, across all contexts:

d°*(M,N):= sup |Obs(C[M])— Obs(C[N])|.
C' context
This is indeed a refinement of contextual equivalence, since one can recover program equivalence
from the pseudo-metric d°** by looking at its kernel. However, it is known that the above definition
behaves unexpectedly as soon as contexts are granted copying capabilities: indeed in many cases the
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distances between two non-equivalent but close looking programs becomes unexpectedly 1. Intu-
itively, what happens is that if some context C' is able to distinguish two programs M and N with
some very small non-zero probability, it is often possible to build amplification contexts that increase
this probability by doing many times the same experiment as C', and then doing statistic reasoning
on the results of the successive experiments. In particular, in randomised languages that includes
copying, together with a type system ensuring termination, a phenomenon known as trivialisation
occurs [CLI5b]: the distance between any pair of non-equivalent programs is always 1. Several
alternative definitions of contextual distance have been proposed to overcome this problem:

e The Amortised Contexrtual Distance (8%, ), introduced by Thomas Ehrhard [Ehr22|, is based
on the addition of an amortising factor r € (0,1) to the definition of the naive contextual
distance: intuitively, each time the context decides to access a new copy of its argument M,
this access can now fail with probability r. Formally, this idea is modelled as:

67”

ctx

(My,M3) = sup [Obs(C[M;@" Q])—Obs(C[M:@" Q)|

C context
where ) is a kind of error term that is added to the language, thus M &" Q is a term that
chooses at runtime between M and failure with probability r. This mechanism prevents the
trivialisation effect, which asymptotically appears as r — 1: then 67, (M, N) tends toward the
naive contextual distance d°**(M, N).

e Another approach is to restrict the number of times a context can use its argument, typically
via a linear type system. The first instance of this idea was the affine contextual distance
introduced by Crubillé and Dal Lago [CL15b]. A more general approach, inspired by the works
on Fuzz|[dAGHK19|, consists in defining a graded family of distances (6™(M, N)),cn, where
d"(M, N) denotes the maximal observable difference that an n-affine context — a context that
uses its argument at most n times—can enforce.

In this work, we propose a more probability-theoretic proof of the trivialisation property for the
naive contextual distance, based on the (weak) law of large numbers, from where we are then able to
extract this new proof bounds on the amortised and graded contextual distances. More precisely, we
are able to (lower) bound them using affine contextual distances, i.e. expressions that use only the
actions of affine contexts. We see our results as a first step towards bridging the gap between the
kind of quantitative tools that are standard in probability and statistics, and the more elementary
probabilistic reasoning that is currently used in (discrete) probabilistic semantics.

1 Applying the law of large numbers to prove trivialisation

1.1 The Weak Law of Large Numbers

The weak law of large numbers(LLN) is a result from early probability theory — already proved by
Bernoulli [BerI3] in the case of boolean-valued distributions. Let’s fix D a probability distribution
on real numbers, and suppose that we sample many times independently from D, and then take the
mean of all these samplings. The LLN essentially says that we’ll get with high probability a real very
close from E(D)-the expected value of D. More precisely, it says that the empiric means converges
in probability towards the expected value, which means that when the number of samplings goes to
infinity, the probability of getting into a fixed width window around the expectancy goes to 1. From
an operational point of view, it follows that testing the empirical mean is equivalent to testing the
expectation itself, as soon as we have access to a sufficient number of samples.



1.2 Proving trivialisation with the LLN

We present now our trivialisation proof technique in the case of a probabilistic language where all
programs terminate with probability 1, and moreover only ground type programs are observable. To
simplify as far as possible the presentation, we additionally suppose that this ground type is Bool:
it means that Obs(M) is the probability that M returns trudﬂ Our overall approach is as follows:

1. First, we associate to any program of type Bool an infinite sequence of {0, 1}-valued random
variables (X%),cn, such that the X% are independent identically distributed (i.i.d) of law
[P] := Prob(P | false)-dp+Prob(P | true)-d;—where dy and §; denote the Dirac distributions

centred at 0 and 1, respectively. In other terms, for any i1, ...,ix, and any n € N, Proba(X} =
i1 A... A XY =iy) is exactly the probability that the successive evaluation of N copies of P
returns successively i1,...,1n.

2. Secondly, for each N € N, and for every rational number ¢ > 0, we build a context C%; that
calls N times its input, computes # {i | the i-th call returns 1}, and finally compare the result
to the target value N - ¢. In our random variables formalism, it becomes:

Proba(C%[P] | true) = Proba(X7PN < q) where X7PN = Z X5,
1<i<N

Observe that this step uses crucially the fact that the context language is able to copy its

input. X7PN is the N-th empiric mean of the sequence of i.i.d variable (Xp), thus the LLN
tells us how C,,[P] behaves when n goes towards infinity:

1 when g > Proba(P | true)

1
0 when ¢ < Proba(P | true) S

Proba(CI[P] | true) =, 00 {

We are now ready to prove trivialisation for any pair of non-equivalent programs M, N of type
Bool. The trick consists in taking as target value ¢ the real number which is in the middle between
Proba(M | true) and Proba(N | true), i.e. qas,n := 5(Proba(M | true)+Proba(N | true)). If M
and N are not equivalent, ¢ will be strictly between E(X ) and E(Xy), and thus when n becomes
big enough, the empiric mean of n copies of (e.g.) M will be smaller than the target value ¢ with
overwhelming probability, while the empiric mean of N will be bigger than ¢ with overwhelming
probability. This situation is represented in Figure ??. From there, and using from above, we
obtain the following proposition:

Proposition 1. Let M, N closed programs of type Bool. Then:
Octo(M, N) >|Proba(CMN[M] | true) — Proba(CN[N] | true)
=|Proba (TMH < qM,N) — Proba (TNn < qM,N))| —nstoo 1 when M & N

1Our ideas could nonetheless be extended to other settings, as long as copying by contexts is allowed, and the
termination guarantee holds—which are the two essential assumptions for trivialisation, see [CL15b]. In particular,
with very minor modifications, our proof scheme would apply to the probabilistic variant of system T considered
in [BLHI7].



Finally, we need to extend the trivialisation result from
pairs of programs of type Bool to pairs of programs of any
(identical) type. The same trick as in [CL15b] works there:
if two programs M, N of some type o are not equivalent,
then there exists a context D that distinguishes them, and
since this context returns an observable event it means
that D[M] and D[N] are programs of type Bool, that
y X y moreover are non-equivalent, and thus we can conclude
0% H XK X X X XXX X XK by applying the trivialisation result to D[M], D[N].
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Figure 1: Probability distributions of
the empiric mean for i.i.d. sequences 2 Lower bounds on the graded and

(Xnm), (Xn) with E(Xp) < E(Xn). amortised distances

Both the graded and the amortised contextual distances
are tamed versions of the naive contextual distance, where
the copying abilities of the contexts are controlled in some
ways. Moreover, the naive distance can be recovered from
them at the limit, i.e. when the controls are made as weak as possible: when the graduation n — +o0o
for the graded distance, or when the amortising factor r — +oco for the amortised one. Our aim in
this — and future — work is to extract information about the tamed distances from the contexts we
built in Section [I1
Recall that by construction, C), uses its argument exactly n times. So C, contributes to the
computation of the graded distance only at grade n. Moreover, it contributes with a factor 7™ to the
amortised distance, where r is the global amortising factor, because during its execution C,, is forced
to pay n times the unitary cost r to obtain n copies of its argument. We want now to replicate the
trick that allowed us to deduce trivialisation of the naive distance at all types from trivialisation at
Bool type, but we need to be careful: indeed when considering contexts D that transform programs
of type o into programs of type Bool, we are forced to restrict ourselves to linear D. In the graded
case, that’s simply because we want the composite context C,,[D] to still use its result at most n
times: it is guaranteed by choosing D to be affine. It’s subtler in the amortised case: what we
need is that the transferring context D does not pay an additional amortising cost, and that’s also
guaranteed by choosing D to be linear.

Theorem 1. For two programs M, N of some type o:

r
5ctx

(M,N) > — sup 7" 67, n([DIM]], [DIN]])

D linear ,n€EN

VneN, §"(M,N)= sup 0f,n([DIM]],[D[N]]).

D affine

where 67, (IM], [N]) := | Proba(Xar" < qar.n) — Proba(Xn" < qar.n)| — observe that this quantity
depends indeed only on the {0, 1}-valued probability distributions [M] and [N].

Observe that given [M], [N] two probability distributions on {0,1}, and n € N, 67, v ([M], [N])
is computable, while it’s less clear for sup, 7™ - 67, 5 ([M], [IN]). We are working on establishing
computable upper approximations of sup, ey " - 07, 5 ([M], [N]), and also asymptotic approxima-
tions for 67, ([M], [N]) and (sup,en 7" - 075 ([M], [N]) when n — +oco0 and r — 1 respectively.
We're not quite there yet but we obtained some preliminary results using results from probability



theory (or statistics) that describe the speed at which the empirical mean converges to the expected
value: the Central Limit Theorem (CLT) [Bil95)], the Berry—Esseen inequality [Berddl [Ess42], and
the Chernoff-Hoeffding inequality [Cheb2].

3 Non termination and parallel convergence testers.

In our previous developments, it was actually crucial to consider a language where all programs
terminate with probability 1: otherwise, the context C), does not compute the empirical mean of
the evaluation of n copies of its argument. It was shown in [CLI7] that trivialisation of the naive
contextual distance does not necessarily hold for a language without termination guarantees: for
instance, in untyped randomised )\—calculu the distance between \z.x and Az.xz @Y% Q is 1 /2,
where Q here is any term terminating with 0 probability, and @'/2 is the fair probabilistic choice.
Trivialisation for non-terminating languages, however, can be recovered, as shown in [CLI7] by
adding to the contexts language a parallel convergence tester, as introduced by Abramsky [Abr87],
i.e. a construct [- || -] such that [M || N] terminates if and only if one of the two programs M
and N terminate. The proof of trivialisation from [CL17] relies on the construction—using parallel
convergence testers—of a family of contexts that simulates certain Boolean functions, known as Tribes
functions, defined by partitioning the n input variables into m disjoint groups (called ”tribes”) and
returning true if at least one tribe contains only true inputs.

3.1 Proving trivialisation via the LLN with parallel convergence testers

We looked at how to extend our approach from the terminating setting to the one of a non-
terminating language extended with parallel convergence tester. Our goal was to use the parallel
tester to define again a function that simulates the computation of the empirical mean of n copies
of its input, with the aim of again applying the law of large numbers. Surprisingly, we found a
way to build such contexts only when adding to the contexts language all n-ary m-convergence
testers—meaning [M; || ... || M, ] terminates if and only if at least m amongst the n terms terminate.
While in a non-probabilistic calculus such generalised convergence testers could easily be simulated
by the binary convergence tester, we found no way to do this in the probabilistic case. So while
our LLN-driven scheme for trivialisation proof works for a probabilistic language with all n-ary m-
convergence testers, the case of only binary convergence testers seems — for now at least — out of the
scope of this technique.

3.2 Threshold theory and Trivialisation

We discovered that the trivialisation problem can in fact be presented as a problem from threshold
theory [DC18|, a research area that studies phenomena where a minor change in the parameters
induces a major change in behaviour. A typical problem there is to consider a family of monotonous
Boolean functions f, : {0,1}" — {0,1}, and to sample its inputs independently according to a
Bernoulli distribution with parameter p € [0, 1]-i.e. each bit X; is set to 1 with probability p, and
to 0 otherwise. A threshold phenomenon occurs when fn(p) := Proba(f,(X1,...,X,) =1] X; «
p- 0o+ (1 —p)-d;) transitions sharply from near 0 to near 1 as p crosses a critical value—where here

2Even though the trivialisation phenomenon doesn’t necessarily happen in non-terminating randomised lambda-
calculi with copying, the naive contextual distance isn’t considered to be meaningful here either, because the ampli-
fication phenomenon still occurs for many pair of programs, in particular all the programs that encode randomised
Booleans that terminate with probability 1. The graded distance [Ehr22] was actually designed first for PCF,, a
randomised variant of PCF.



sharply means that when n tends towards oo, the width of the transition windows tends towards
0. Threshold theory is concerned about when such threshold exists, how fast they are reached, the
width of the window where they occur etc....

Our LLN-based proof of trivialisation in Section [1| can be rewritten in the world of threshold
theory: First we built for every target value ¢ a family of monotonous boolean functions, that can
be simulated by a context of the language :

1if L. 32, <q,
I

e and 0 otherwise.

Then we proved, using the LLN, that for every 0 < ¢ < 1, the family fZ has a sharp threshold.All
proofs of trivialisation in the literature— i.e. the original ones in [CL17], as well as ours in the
present work — can be reframed to fit in this framework, for some well-chosen family (fZ). Besides,
the construction of the f7 is usually driven by the expressive power of contexts, and as a consequence
the difficult bit consists in proving that a given family of (f?),en has a sharp threshold. That’s also
a crucial question in threshold theory, and thus there are there a number of non-trivial results on
which kinds of family of boolean functions have threshold.

In particular, it is known [DCI18] that any family of weakly symmetric monotone Boolean func-
tions admits a sharp threshold, where weakly symmetric here means that f, is invariant under the
action of some transitive sub-group of the permutations group. This result can in particular be
applied to the functions (f?) we used in Section even though the LLN give a more intuitive expla-
nation. More interestingly, it can also be applied to the Tribes functions, that indeed form a weakly
symmetric family — being invariant under any permutation that reorders the tribes and permutes
the bits within each tribe. This gives us a more elegant proof that the one in [CL17] of the fact that
the Tribes function has a sharp thresshold, and thus that the naive contextual distance is trivial for
a language with copying and binary parallel convergence testers.

Moreover, threshold theory has also been interested in the speed of the sharpening of the thresh-
old, which makes us hope to be able to use this proof of trivialisation in order to obtain bounds on
the graded and amortised distances also in this setting.
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