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1 Introduction

T. Ehrhard and L. Regnier [1], [2] discovered that by symmetrizing some rules of Linear Logic
(LL) one obtains a proof calculus that can express the differential of proofs. This sequent
calculus is called Differential Linear Logic (DiLL). Looking at its categorical semantics, given by
differential categories [3], [4], we find intuitions coming from differential geometry. For example,
the formula !A ® A plays the role of the tangent space of A, where !A is the base space and A
the (non-dependant) vector space associated to each point of !A. Since DIiLL is simply typed,
geometric models of DIiLL [5], [6] are based on vector spaces as their tangent bundles is a trivial
vector bundle (hence, a non dependent construction).

This observation has lead us to wonder whether differential linear logic could be a particular case
of a dependent type theory that expresses differentiation. In order to start this investigation we
first reformulate models of linear logic (linear-non-linear adjunction) in terms of Grothendieck
fibrations, which is a well known semantic of typed theories [7]. Then, we show that the
categorical semantic of differential linear logic (differential categories) is expressed in this setting
as a tangent functor, that we call a linear tangent functor, from the base category to the linear
fibration.

This tangential presentation of models of DiLL is a linear-non-linear reformulation of the usual
semantic, which is based on linear categories. Moreover, we think that this fibered perspective
is well suited to further generalization as one should be able to adapt already existing formalism
of type theories to our context. We have in mind comprehension categories as they provide
a semantic for dependent type theory. Our point of view also fits well with already present
intuitions that linear logic should be interpreted geometrically as vector bundles [8].

The starting point of this work is the work of M. Kerjean, M. Rogers and V. Maestracci’s [9]
on a functorial axiomatisation of categorical models of DiLL. They found a more concise and
functorial axiomatisation of categorical models of DiLL. They achieved it by placing linear-non-
linear adjunction as a basis and asking for the existence of a functor acting as the differential
at a point. Our fibered presentation can be understood as a tangential version of their work.
Some of the core ideas presented are also in work of G. Cruttwell, J. Gallagher, JS. P. Lemay and
D. Pronk [10, section 2]. They show that one can associate to a coalgebra modality two fibrations
above its coKleisli. The categories £[X,] and £ [X] are respectively particular instances of the
categories s(€) and s(C, £) which are defined below. Our work can be seen as a generalization
of this part of their work to linear-non-linear adjunctions.

Notations :

o For convenience, we assume that the monoidal categories we consider are always strict
meaning that the unitors and associators are assumed to be the identity morphism.

o We denote “;” the diagrammatic composition of morphisms : f;g:=go f.



2 Quick Overview

We now give a quick overview of the core ideas and constructions of our work.

Categorical models of linear logic are defined as linear-non-linear adjunctions [11]. We first
show that every linear-non-linear adjunction can be expressed as a Grothendieck fibration above
the cartesian category.

Definition 2.1 (linear-non-linear adjunction): A linear-non-linear adjunction is a symmet-
ric monoidal adjunction between a symmetric monoidal category (£, ®,1) and a cartesian
category (C, x,I)
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C is called the cartesian category of the LNL adjunction and £ the monoidal category.
We always use X,Y, Z for objects of € and A, B, C for objects of £. A linear-non-linear
adjunction is said to be additive when £ is an additive category [3], this means that £ is
enriched over commutative monoids and this enrichment is compatible with the monoidal
structure of £ (non-standard terminology).

This definition differ from the usual definition of linear-non-linear adjunction in that we do not
require (£,®,1) to be monoidal closed. This choice has been made in order to capture greater
generality and is not of big importance as closure does not play a role in the interpretation of
the other connectives of LL and DiLL.

This structure allows the interpretation of LL in the monoidal category £ with ! given by & o
U. The contraction and weakening rule are interpreted as natural transformations (in £) with
components c4 : 1A - 1A® !4 and w, : !A — 1. To construct them, we use the colax structure
on F to transport the cocommutative comonoids (X, Ay, Ix) from € to £ where Ay : X —
X x X are the diagonal morphisms and Iy : X — I are the terminal morphisms.
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We now explain how to construct a Grothendieck fibration from any linear-non-linear adjunc-
tion. In order to achieve this we take inspiration from a classic construction in the semantic of
simple type theory : the simple category [7, chap. 1.2].

Definition 2.2 (Simple Category): Let (£, x,I) be a cartesian category. Define s(C) as
the category :
o Objects : pairs (X, J) with X, J € G,.
o Morphisms : a morphism from (X, J) to (Y, K) is a pair (f,u) with f: X — Y and
u: X xJ—>K.

Given (f,u): (X,J) = (Y, K) and (g,v) : (Y,K) — (Z, L), composition is given by :
(f,u); (9,v) = (f;9, Bx X 1d 53 f X u;0)



The projection functor P : s(€) — € which sends (X, J) to X and (f,u) to f is a split
fibration. The product of € makes s(€) into a fibered cartesian category.

This category interprets simply typed lambda calculus [7, chap. 2]. Similarly, given a linear-
non-linear adjunction, we define a category called the linear-non-linear simple category.

Definition 2.3 (Linear-non-linear Simple Category): The linear-non-linear simple category
s(C, £) of a linear-non-linear adjunction is the category s(C, L) :
o Objects : pairs (X, A) with X € ¢, and A € &,.
o Morphisms : a morphism from (X, A) to (Y, B) is a pair (f,u) with f: X - Y and
u:F(X)®A— B.
o The identity of (X, A) is the morphism (idy,wy ® id 4).

Given (f,u): (X,A) — (Y, B) and (g,v) : (Y, B) — (Z,C), composition is given by :
(f,u); (9,0) = (f;9 , cx ®idy; F(f) ®usv)

The projection functor Ps : s(C, £) — € which sends (X, A) to X and (f,u) to f is a split

fibration. The product of £ makes s(€, £) into a fibered monoidal category.

The two categories s(€) and s(C, £) are respectively the fibered version of the cartesian category
€ and the monoidal category £. This is shown by constructing two fibered functors F* : s(€) —
s(C, L) and U? : s(€, L) — s(€) which are involved in a fiberwise linear-non-linear adjunction.

The starting linear-non-linear adjunction is recovered from this construction by taking the
fibers above the terminal object of € : € = s(€); and £ = s(C, £). The two functors U* and
F 9, when restricted to this fiber and passed through those two isomorphisms, identify with &
and F.

Now that we have seen how to construct a fibration from a linear-non-linear adjunction, we
explain how asking for the existence of a tangent functor is equivalent to asking that £ is a
model of DiLL.

First we need to define two more functors, P, : s(C,£) — L and L, : £ — s(C, L).
Py(X,A)=F(X)® A Pe(fiu) =cx ®idg; F(f) @ u
Ly(A) = (U(A), A) Ly(l) = U),w, ®1)



Definition 2.4 (Linear Tangent Functor): A linear tangent functor T for a additive linear-
non-linear adjunction is a functor T : € — s(C, £) such that :

1. T is a section of of Fs

2. T satisfies the linearity rule : U; T = L,

3. T satisfies the monoidal rule :

T(HU(A)) ® T(idU(!B));”TA,!B(Ls (m®A’B)) =1}, p(Ls(idy ®dp)); T(Hu(Ach))

Where ny : X — UF(X) is the unit of the adjunction, dy : !A — A the counit of the
adjunction & 4 U and n* is the reindexing functor relative to P, of n4 g the lax structure
on U.

An additive linear-non-linear adjunction equipped with linear tangent functor is called
a tangent linear-non-linear adjunction.

If we think of (s(C, L), F-) as equipping € with a notion of (trivial) vector bundle (the fiber
above X being the (trivial) vector bundles above X with “Whitney tensor product”) then asking
for such a tangent functor is quite natural. Notice that the axioms of T prescribes how it acts
on objects of € of the shape U(A). This is expected as objects U(A) play the role of vector
spaces and the tangent bundle of a vector space V is a trivial vector bundle V' x V hence, it
can be expressed in s(C, £). For more complex spaces that may inhabit €, T associates it to
trivial vector bundle on which we have no information.

We wonder whether a “dependent linear-non-linear fibration”! would allows to express in an
analogous manner the tangent bundles of more complex spaces. Perhaps such a construction
could be to (cartesian) tangent categories what differential categories are to cartesian differential
categories.

We now state the main theorem :

Notion yet to be defined but we can take inspiration from the fibered semantic of type theories [7, chap. 10].
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Theorem 2.1: Every tangent linear-non-linear adjunction make £ a model of DiLL and
reciprocally every model of DiLL (monoidal differential category) is a tangent linear-non-
linear adjunction with its Eilenberg-Moore category.

Proof (Sketch): Given a tangent linear-non-linear category define 94 : !1A® A — A as the
second component of the pair T (772(( A)). We show that its a natural transformation. The
structure of s(C, £) allows us to deduce the chain rule. The linearity rule of T allows us
to deduce the linear rule. The monoidal rule of T allows us to deduce the monoidal rule.
This is enough to show that £ is a monoidal differential category.
Reciprocally, given £ a monoidal differential category, it is involved in a linear-non-linear
adjunction with its Eilenberg-Moore category £'. We must now define a linear tangent
functor from £' to 8(,5!, L'). Let p4 be the comultiplication of !. On objects, every free
coalgebra p 4 is sent to T (p4) := (P4, A), every non free coalgebra h: A — A is sent to
T (h) := (h, A). On morphisms :
e Let f:py — pp be a morphisms between two free coalgebras then, T(f):=
(f,04; f;dp)-
o Let f:py — h be a morphism from a free coalgebra to a non-free coalgebra then,
T(f) = (f, 005 ).
e Let f:h — pp be a morphisms from a non-free coalgebra to a free coalgebra then,
T(f)=(fiwa®(f dp)).

o Let f:h— h’ be a morphisms between two non-free coalgebras then, T(f) :=
<fa W4y ® f)

This defines a linear tangent functor.

We finish with a few words on cartesian differential categories.

Given a tangent linear-non-linear adjunction, composing J; U* give rise to a functor T': € —
s(€). In the case where £ is a Seely category and C is the coKleisli of !, T sends a morphisms f :
X — Y to (f, D[f]) where D is the differential operator of £,. We recover the usual constructions
in the Seely case.

Define €, as the smallest full subcategory of € containing objects of shape U (A) and closed by
product. Then €, is a cartesian differential with T its associated cartesian tangent structure
[12] (as in the Seely case).

This results seams similar Theorem 3.9 of [12], with object of shape U(A) playing the role of
differential objects. As per the discussion page 4, the link between our fibered presentation and
tangent category should be investigated.
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