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Abstract

We present an implementation of proof-nets for unit-free multiplicative linear logic in the proof as-
sistant Rocq. It contains a definition of proof-structures and proof-nets, a proof of the sequentialization
theorem as well as a definition of cut-elimination.

1 Introduction

Proof assistants are used to formalize mathematical reasonings and thus to certify formal proofs. A line of
work in formalization consists in implementing a logic then proving some of its properties — e.g. admissibility
of the cut-rule. This gives more confidence in those proofs where usually many cases are to consider, with
sometimes tedious details and technicalities. There are several implementations of (sub-systems of) linear
logic [Gir87] in different proof assistants: e.g. [1; 2; 3; 4; 5; 6] in Rocq, [7] in Abella and [8; 9| in Isabelle.
However, all these libraries consider only the sequent calculus syntax and never the proof-net syntax, despite
the later being a major contribution from linear logic [Gir96]. Contrary to the usual representation of
proofs as derivation trees in sequent calculus, proof-nets represent proofs as general graphs respecting some
correctness criterion [DR89|. They quotient derivations of sequent calculus up to rule commutations, thus
results like cut elimination are easier to prove in this formalism. Even if there is not much doubt that the
key results (sequentialization, cut-elimination, etc.) about multiplicative proof-nets hold, for they have been
proved in many different ways, this is not the case for all proof-nets. For instance, various definitions of
unit-free multiplicative-additive proof-nets [HG05; HH16] have not only complex sequentialization proofs,
but also rarely more than one such proof. Still, before formalizing these complex objects, starting with the
simpler multiplicative proof-nets is a step where most difficulties arising from the formalization are present.

The current absence of implementations can be explained by the very nature of proof-nets: while a
proof of sequent calculus is an inductive object, easily defined in most proof assistants, a proof-net is a
graph, which is harder to define and manipulate formally. Indeed, many reasonings involve “geometric” or
“sraphical” arguments, with drawings to explain the proof, as well as silent “evident” arguments — for instance
that some concatenation of simple paths is simple without giving explicitly all hypotheses leading to this
conclusion. Another explanation is that transformations of graphs — e.g. adding or removing vertices and
edges — are done very frequently but are complex formally: vertices after the transformation are not those
before and, whereas on paper one usually and implicitly considers graphs up to isomorphisms, on computer
one has to explicitly provide these isomorphisms (removing a vertex then adding it back is not exactly the
original graph).

We formalized proof-nets for unit-free multiplicative linear logic in the Rocq prover [Roc], so as to expand
the Yalla [Laul7| library developed by the second author. It uses Graph Theory [DP18|, a recent graph library
built upon the Mathematical Components library [MC| with its SSReflect proof language. This library defines
graphs and many needed operations on them: adding and removing vertices and edges, isomorphisms of
graphs, sub-graphs, etc. More precisely, we implemented:

e a definition of proof-nets;
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e a definition of the desequentialization function from derivations of sequent calculus to graphs (with a
proof the obtained graph is a proof-net);

e a proof of the sequentialization theorem: given a proof-net, there exists a proof desequentializing to it
(more precisely to a graph isomorphic to it);

e a definition of cut-elimination in a proof-net (with a proof it preserves being a proof-net and that it
terminates).

In this paper are given details about some of these results, how they have been formalized and why — as
a large part of the work was to discover which formalization choices were best suited to the problem. The
source code is public and can be found on Software Heritage! (the current version is also available on a git?).
More details on this formalization are given in the first author’s thesis [Di24, Chapter 5|.

Outline We start by giving the chosen formal definition of proof-net, with some discussion about rejected
solutions (Section 2). Then are explained some difficulties encountered during the formalization (Section 3).

2 Formalization of proof-nets

We present here the cornerstone of our formalization, where choices mattered the most: the formal defini-
tion of proof-nets, and all depending strata (proof-structures, etc.). Choosing these definitions was the most
complex part of the formalization because they directly influence all other choices. Many different, but equiv-
alent, definitions of unit-free multiplicative proof-nets exist in the literature, notably as multigraphs [FR94]
and as hypergraphs [GMO1]. We choose here one of the most usual presentation, seemingly simple enough to
be formalized: a proof-net is a directed multigraph made of az-, %-, ®- and cut-vertices, with edges between
them. Even once this definition chosen, there are still subtle variations possible, among which:

e does one put conclusion vertices, or have pending edges, and thus a partial graph?

e does one put az-vertices or just axiom links?

e which correctness criterion to distinguish proof-nets among proof-structures?

e %- and ®-vertices have ordered premises (i.e. syntactically A% B # BZ A), how to take it into account?

Our goal was to choose a formalization making the definitions and proofs we are interested in easier
to write (sequentialization and cut-elimination). Furthermore, for taking advantage of the definition of
derivations already implemented in the Yalla library, some notions of formulas and sequents were already
fixed. In particular, the choices made in the current version of Yalla is that a sequent is a list I' of formulas

and there is an ezplicit exchange rule (ez) (with o a permutation). We choose to have conclusion
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vertices, so as to consider total graphs, as well as az-vertices to keep only directed edges. The chosen
correctness criterion is the Danos-Regnier one [DR89], which is one of the most commonly used criterion and
for which there is a simple proof of sequentialization [Di+25].

Concretely, two main difficulties arise when defining proof-nets. On one hand, we have graphs with some
supplementary data: identification of left and right premises of %- and ®-vertices, ordering to recover a
conclusion sequent. On the other hand, there are all the constraints on proof-structures: in- and out-degrees
of vertices, relations respected by the formulas labeling edges. It is natural to separate these two parts, with
first a definition of graphs with some more data, then asking properties on these objects, yielding proof-
structures and then proof-nets. Since the properties depend on the concrete definitions of the supplementary
data, it is no surprise the first part was the most difficult to formalize. Here, we give a definition of proof-nets
along a description of some non-trivial implementation choices.

https://archive.softwareheritage.org/browse/directory/53def4330cb28b417c83405£68a67a9735a95d1d/
Zhttps://github.com/RemiDiG/proofnet_mll
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2.1 Graph with additional data

The library Graph Theory defines (finite) graphs as follows:
Record graph (Lv Le : Type) : Type :=
Graph {
vertex:> finType;
edge: finType;
endpoint: bool — edge — vertex;
vliabel: vertex — Lv;
elabel: edge — Le }.
Notation source := (endpoint false).
Notation target := (endpoint true).
In plain words, a graph is the data of a finite set verter of vertices, a finite set edge of edges, a function
endpoint giving the source and target of edges, and labeling functions vlabel and elabel on vertices and edges
respectively. Hence our definition of the underlying graphs for proof-nets:

Definition 1. A MLL graph is a finite total directed multigraph [JU76] equipped with:
e a labeling function R from vertices to {az; cut; ®;7%; ¢} (with ¢ for conclusion vertices);
e a labeling function F from edges to formulas;
e a labeling function £ from edges to Booleans to identify left premises.

Vertices are named according to their label: az-vertices, cut-vertices, ®-vertices, %¥-vertices and
c-vertices. Given a vertex v, edges with target v are the premises of v. To identify which edges are left
and right premises of ®- and %-vertices, the standard trick on paper is to always write the left premise on
the left of the vertex and the right premise on its right. Obviously, this is not formal: here the £ function is
used instead. Our implementation of MLL graphs follows:?

Notation base_graph := graph (flat rule) (flat (formula x bool)).

Definition flabel {G : base_graph} (e : edge G) : formula := fst (elabel e).

Definition llabel {G : base_graph} (e : edge G) : bool := snd (elabel e).

This means a base_graph is a graph with vertices labeled by rule (a type whose elements are { ax; cut; %; ®; c}),
and edges by formula (a type taken from Yalla) together with a bool to identify left and right edges. This
definition is easy to write and manipulate, as it corresponds to an instance of the graphs from Graph Theory.

Remark we still lack data at this point: how to recover the conclusion sequent associated to such a graph?
As it is a list, we have for instance that - A, B and + B, A are different. Thus, we order c-vertices.

Definition 2. A pre-proof-structure is a MLL graph along with a list of some of its edges. The sequent
associated to a pre-proof-structure is the list of formulas obtained by applying F on this list.

In Rocq this corresponds to the following:
Record graph-data : Type :=
Graph_data {
graph_of > base_graph;
order : seq (edge graph_of)}.
Later, for a proof-structure, the list of edges order will be asked to contain exactly once each edge of target
a c-vertex. This list indeed allows to define the sequent associated to such a graph:
Definition sequent (G : graph_data) : seq formula = [seq flabel e | e < order G].
We choose to separate the list order from the other data on the graph, because these are quite disjoint
concepts, and we rarely need the sequent of a graph — e.g. it is useless for the correctness criterion.

Remark these definitions are quite far from the usual ones in the literature. In particular, we have useless
information: the £ function is defined for all edges and not just for premises of - and ®-vertices. The reason
is that it is usually easier to have one’s data on a simple object, rather than a more accurate but partial

3The flat function is the identity, used by the graph library for technicalities about isomorphisms. It can be safely ignored.



data on complex structures. Typically, when modifying a graph one also has to adapt proofs that it is a
proof-structure, on which will depend the definition of a left edge in this case. This leads to convoluted proofs
and definitions of left edges, whereas having left from the very beginning, with possibly some nonsensical
value for, say, the premise of a c-vertex, makes defining objects easier, and leads to simpler proofs. For
instance, formalizing near what happens on paper would yield the following:
Record graph_data : Type :=
Graph_data {
graph_of > graph rule formula;
order : |finType of { v : graph_of | vlabel v == c}| —
"I_#||finType of { v : graph_of | vlabel v == c}||;

order_inj : injective order;

direction : bool — |finType of { v : graph_of | vlabel v == ® || vlabel v == & }| — edge graph_of }.
Notation left := (direction false).
Notation right := (direction true).

We would have functions left and right, generalized as a unique function direction, defined on %- and ®-
vertices, and an injective (thus bijective) order function associating to each c-vertex its order in the sequent
(’I-n is the set of natural numbers lesser than n). Alas, this definition is terrible to manipulate. Using
cardinals makes it mandatory to compute these cardinals as soon as one defines such a graph, or worse
when defining a graph from another. Furthermore, dependent types complexify the uses of this definition,
which is a shame as it is our basic block and therefore is present everywhere! As an example, to do a basic
operation such as the disjoint union of two graphs, one needs to use proofs that a vertex labeled ® before
keeps this label after, and so on, just to define this union. Hence, we choose another implementation to keep
the following definitions and proofs easy to handle. The chosen solution is nonetheless not without fault, for
we need to fix a value for llabel on irrelevant edges, that we choose arbitrary to be true.

2.2 Proof-nets

From the previous graphs, proof-structures can be easily defined by asking for geometrical constraints on in-
and out-degrees along (local) considerations on labels of edges. We also have to relate the list of edges to
the c-vertices. There is nothing surprising nor difficult here, leading to implementations such as:
Definition proper_tens_parr (G : base_graph) =

V (b: bool) (v: G), viabel v = (if b then ¥ else ®) — el er ec,

el \in edges_at_in v A llabel el N\ er \in edges_at_in v A —llabel er A

ec \in edges_at_out v A flabel ec = (if b then parr else tens) (flabel el) (flabel er).
This property means that any %-vertex (resp. ®-vertex) has two in-coming edges el and er and one out-going
edge ec such that L(el) is true, L(er) is false and F(ec) = F(el) ¥ F(er) (resp. F(ec) = F(el) ® F(er)).

We can finally define proof-nets. A path is simple if it is without repetition of edges.
Definition 3.

e A switching path (resp. cycle) is a simple undirected path (resp. cycle) not containing both premises
of a W-vertex. A left-switching path is a simple undirected path not containing a premise of a %-
vertex whose image by L is false.

e A proof-net is a proof-structure which is correct, meaning we have both:

acyclicity: there is no non-empty switching cycle;

connectedness: the graph is not empty, and between any two vertices there is a left-switching path.

One can check this definition is equivalent to the standard one using correctness graphs [DR89|, because
all acyclic correctness graphs have the same number of connected components. Considering these switching
and left-switching paths allows to stay in the underlying graph of the proof-net, preventing from proving
results such as “if a correctness graph is acyclic, and a vertex in the proof-net is removed, then the resulting
correctness graph is acyclic”. These results, not proved on paper as trivial, are tedious formally because
one needs to transport paths from one graph to another, which is not hard but is a long and boring chore.



Considering only one graph prevents the need for such lemmas, at the lighter cost of considering paths with
restrictions on their edges — restriction we need in some shape anyway, for we have to forbid repeating edges.

About the implementation in Rocq, undirected paths were not in Graph Theory, there were only directed
paths. We defined them as follows, by mimicking the definition of directed paths, and prove some of their
usual properties (concatenation, sub-paths, etc.).
Definition upath {Lv Le : Type} {G : graph Lv Le} := seq ((edge G) x bool).
Notation usource e := (endpoint (~~e.2) e.l).
Notation utarget e := (endpoint e.2 e.l).
Fixpoint wwalk (z y : G) (p : upath) =

if p is e :: p’ then (usource e == x) && wwalk (utarget e¢) y p’ else z == y.

Having a notion generalizing both switching and left-switching paths allows to factorize most of the work
about correctness. To this end, we need to associate edges (premises of the same %-vertex for switching
paths) and to forbid edges (right premises of Z¥-vertices for left-switching paths). Thus are defined f-paths,
given as parameter a function f from edges to some option type, which can be seen as an edge-coloring with
a special color None. A path is an f-path if its image by f has no duplicate (i.e. for two edges a and b inside,
f(a) # f(b)) and does not contain None. Switching paths are f-paths for f the identity, except for premises
of %¥-vertices which are sent to the same element — e.g. the %¥-vertex they point to. Left-switching paths are
f-paths for f the identity, except for non-left premises of %-vertices which are sent to None. Remark in
particular that with f the identity, an f-path is exactly a simple path. This yields in Rocq:

Definition supath {Lv Le : Type} {I : eqType} {G : graph Lv Le} (f : edge G — option I) (s t: G)
(p : upath) := (uwalk s t p) && uniq [seq f e.1 | e < p| && (None \notin [seq f e.1 | e < p]).
Definition switching {G : base_graph} : edge G — option ((edge G) + G) :=
fun e = Some (if viabel (target e) == % then inr (target e) else inl e).
Definition switching_left {G : base_graph} : edge G — option (edge G) :=
fun e = if (vlabel (target e) == %) && (~~llabel e) then None else Some e.
One then defines acyclicity and connectedness for these paths, finally yielding a definition of proof-nets.

3 Limits of the implementation

Once proof-nets are defined, other definitions and proofs follow more or less straightly. We explain here one
of the main difficulties faced in this process: isomorphisms in sequentialization (see [Di24, Chapter 5| for two
other difficulties: manipulating graphs explicitly and the computation time of Rocq itself). When proving
the sequentialization theorem, the hard part on paper is finding a splitting vertex. Then, proving that such
a vertex can be removed to get one or two proof-nets is trivial enough to be left implicit, and is often not
even mentioned. On computer, it is the converse: proving there is a splitting vertex is not much harder than
on paper, whereas the implicit part translates on computer into a most tedious task!

As an example, consider the search for a splitting ®-vertex v. It is easy to obtain a terminal ®-vertex not
belonging to any cycle. This is enough for sequentialization, as removing it gives two connected components,
whence two proof-nets. However, formally one has to define those connected components, for instance by
looking at all vertices having a path from them to the source of the left premise of v. Then one uses this
complex definition to prove that adding a c-vertex in place of v in this graph indeed yields a proof-net.
Furthermore, once this tedious work done on both graphs, one still has to give an isomorphism between the
original graph and the two proof-nets to which one adds v back!

4 Conclusion & Perspectives

We implemented in Rocq a definition of unit-free multiplicative proof-nets with two main results of this
theory: the sequentialization theorem and the normalization of cut-elimination. Many concepts and results
could be added to this formalization: axiom-expansion, confluence, links with sequent calculus regarding
cut-elimination and rule commutations, tacking into account the miz-rules, etc. Nonetheless, this project
shows that formalizing proof-nets can be done in a not so tedious fashion. Extensions to exponential or
additive proof-nets seem doable, as the main difficulties should be about manipulating graphs, meaning the
same as for multiplicative proof-nets.
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