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1 Introduction

Substructural logics are logic systems that lack at least one of the structural rules, weakening, contrac-
tion, and exchange. Joachim Lambek’s syntactic calculus [10] is a well-known example that disallows
weakening, contraction, and exchange. Another example, linear logic, proposed by Jean-Yves Girard [7],
is a substructural logic in which weakening and contraction are in general disallowed but can be recov-
ered for some formulae via modalities. Substructural logics have been found in numerous applications
from computational analysis of natural languages to the development of resource-sensitive programming
languages.

Left skew monoidal categories [13] are a weaker variant of MacLane’s monoidal categories where the
structural morphisms of associativity and unitality are not required to be bidirectional, they are natural
transformations with a particular orientation. Therefore, they can be seen as semi-associative and semi-
unital variants of monoidal categories. Left skew monoidal categories arise naturally in the semantics
of programming languages [2], while the concept of semi-associativity is connected with combinatorial
structures like the Tamari lattice and Stasheff associahedra [21].

In recent years, in collaboration with Tarmo Uustalu and Noam Zeilberger, we started a research
project on semi-substructural logics, which is inspired by a series of developments on left skew monoidal
categories and related variants by Szlachányi, Street, Bourke, Lack and many others [13, 12, 9, 4, 5].

We call the internal languages of left skew monoidal categories and their variants semi-substructural
logics, because they are intermediate logics in between (certain fragments of) non-associative and asso-
ciative intuitionistic linear logic (or Lambek calculus). Semi-associativity and semi-unitality are encoded
as follows. Sequents are in the form S | Γ ⊢ A, where the antecedent consists of an optional formula S,
called stoup, adapted from Girard [8], and an ordered list of formulae Γ. The succedent is a single for-
mula A. We restrict the application of introduction rules in an appropriate way to allow only one of the
directions of associativity and unitality.

This approach has successfully captured internal languages for a variety of categories, including (i)
left skew semigroup [21], (ii) left skew monoidal [17], (iii) left skew (prounital) closed [15], (iv) left
skew monoidal closed categories [14, 19], and (v) left distributive skew monoidal categories with finite
products and coproducts [20] through skew variants of the fragments of non-commutative intuitionistic
linear logic consisting of combinations of connectives (I,⊗,⊸,∧,∨). Additionally, discussions have
covered partial normality conditions, in which one or more structural morphisms are allowed to have an
inverse [16], as well as extensions with skew exchange à la Bourke and Lack [18, 20].

All of the aforementioned calculi with sequents of the form S | Γ ⊢ A are cut-free and therefore, by
their rule design, they are decidable. Moreover, they all admit sound and complete subcalculi inspired
by Andreoli’s focusing [3] in which rules are restricted to be applied in a specific order. A focused
calculus provides an algorithm to solve both the proof identity problems for its non-focused calculus and
coherence problems for its corresponding variant of left skew monoidal category.
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2 Craig Interpolation for Semi-Substructural Logics

We say a logic L has Craig interpolation property if for any formula A → C provable in L , there
exists a formula B such that A → B and B → C are provable in L , satisfying the variable condition:
var(B)⊆ var(A)∩var(C) (var(A) is the set of atomic formulae appearing in A) [6] (→ is the implication
connective in L ).

In this work, we show that sequent calculi for left skew monoidal (closed) categories enjoy Craig
interpolation.

2 Sequent Calculus and Interpolation

Recall the sequent calculus (LSkG) for left skew monoidal closed categories from [14], which is a skew
variant of non-commutative multiplicative intuitionistic linear logic.

Formulae (Fma) are inductively generated by the grammar A,B ::= X | I | A⊗B | A ⊸ B, where X
comes from a countably infinite set At of atoms, I is a multiplicative unit, ⊗ is multiplicative conjunction
and ⊸ is a linear implication.

A sequent is a triple of the form S | Γ ⊢ A, where the antecedent splits into: an optional formula S,
called stoup [8], and an ordered list of formulae Γ and succedent A is a single formula. The symbol S
consistently denotes a stoup, meaning S can either be a single formula or empty, indicated as S = −;
furthermore, X , Y , and Z always represent atomic formulae.

Derivations in are generated recursively by the following rules:

A | ⊢ A
ax

− | Γ ⊢ A B | ∆ ⊢C
A ⊸ B | Γ,∆ ⊢C ⊸L

− | Γ ⊢C
I | Γ ⊢C IL

A | B,Γ ⊢C
A⊗B | Γ ⊢C

⊗L

A | Γ ⊢C
− | A,Γ ⊢C

pass
S | Γ,A ⊢ B

S | Γ ⊢ A ⊸ B ⊸R − | ⊢ I
IR

S | Γ ⊢ A − | ∆ ⊢ B
S | Γ,∆ ⊢ A⊗B

⊗R

(1)

The inference rules in (1) are similar to the ones in the sequent calculus for non-commutative multiplica-
tive intuitionistic linear logic (NMILL) [1], but with some crucial differences:

1. The left logical rules IL, ⊗L and ⊸L, read bottom-up, are only allowed to be applied on the
formula in the stoup position.

2. The right tensor rule ⊗R, read bottom-up, splits the antecedent of a sequent S | Γ,∆ ⊢ A⊗B and
in the case where S is a formula, S is always moved to the stoup of the left premise, even if Γ is
empty.

3. The presence of the stoup distinguishes two types of antecedents, A | Γ and − | A,Γ. The structural
rule pass (for ‘passivation’), read bottom-up, allows the moving of the leftmost formula in the
context to the stoup position whenever the stoup is empty.

4. The logical connectives of NMILL typically include two ordered implications ⊸ and ⊸, which are
two variants of linear implication arising from the removal of the exchange rule from intuitionistic
linear logic. In here, only the left implication ⊸ is present.

For a more detailed explanation and an interpretation of the system as a logic of resources, see [14,
Section 2]. This calculus is sound and complete wrt. left skew monoidal closed categories and cut-free,
i.e., following two rules are admissible:

S | Γ ⊢ A A | ∆ ⊢C
S | Γ,∆ ⊢C

scut
− | Γ ⊢ A S | ∆0,A,∆1 ⊢C

S | ∆0,Γ,∆1 ⊢C
ccut
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We introduce an equivalence relation on derivations ⊜ [14], corresponding to the equational theory
of skew monoidal closed categories.

We are interested in if LSkG enjoys Craig interpolation. For substructural logic (especially non-
commutative logic), we have a general version of interpolation [11]:

Given f : Γ ⊢ C and any partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exist a formula D and two derivations
g : Γ1 ⊢ D and h : Γ0,D,Γ1 ⊢C, and var(D)⊆ var(Γ0)∩var(Γ0,Γ1,C) (var(A) is the set of atomic
formulae appearing in A and var(Γ) means

⋃
var(Ai) for Ai ∈ Γ).

Due to two cut rules in LSkG, we should consider two versions of general interpolation:

(scut-interpolation) Given f : S | Γ ⊢C and any partition ⟨Γ0,Γ1⟩ of Γ, there exist a formula D and
two derivations g : S | Γ0 ⊢ D and h : D | Γ1 ⊢ C, and var(D) ⊆ var(s(S),Γ0)∩ var(Γ1,C), where
s(S) = I if S =− or s(S) = B if S = B.

(ccut-interpolation) Given f : S | Γ ⊢C and any partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exist a partition of
⟨∆1, . . . ,∆n⟩ of Γ1, a list of formulae D1, . . . ,Dn and derivations g : S | Γ0,D1, . . . ,Dn,Γ2 ⊢ C and
hi : − | ∆i ⊢ Di for i ∈ [1 . . .n] such that var(D1, . . . ,Dn)⊆ var(∆1, . . . ,∆n)∩var(s(S),Γ0,Γ2,C).

These two statements are proved by mutual induction on derivations.
For scut-interpolation, the critical case is f = ⊸L( f ′, f ′′), with the partition ⟨Γ0,(Γ1,Γ2)⟩ for Γ, and
two derivations f ′ : − | Γ0,Γ1 ⊢ A and f ′′ : B | Γ2 ⊢ C. Our goals is to find a formula D and derivations
g : A ⊸ B | Γ0 ⊢ D and h : D | Γ1,Γ2 ⊢ C. We first apply inductive hypothesis of ccut-interpolation on
f ′ and then get g′ : − | Γ0,D1, . . . ,Dn ⊢ A, h′i : − | ∆i ⊢ Di, i ∈ [1 . . .n]. By applying inductive hypothesis
of scut-interpolation on f ′′, we obtain derivations g′′ : B | ⊢ E and h′′ : E | Γ2 ⊢C. Then we construct
desired derivations as follows:

g′

− | Γ0,D1, . . . ,Dn ⊢ A
g′′

B | ⊢ E
A ⊸ B | Γ0,D1, . . . ,Dn ⊢ E ⊸L

A ⊸ B | Γ0,D1, . . . ,Dn−1 ⊢ Dn ⊸ E ⊸R

...
A ⊸ B | Γ0 ⊢ D1 ⊸ (. . .(Dn ⊸ E) . . .)

⊸R

h′1
− | ∆1 ⊢ D1

h′n
− | ∆n,Γ2 ⊢ Dn

h′′
E | Γ2 ⊢C

Dn ⊸ E | ∆n,Γ2 ⊢C ⊸L

...
D2 ⊸ (. . .(Dn ⊸ E) . . .) | ∆2, . . . ,∆n,Γ2 ⊢C

D1 ⊸ (. . .(Dn ⊸ E) . . .) | ∆1, . . . ,∆n,Γ2 ⊢C
⊸L

Notice that Γ1 = ∆1, . . . ,∆n, and the variable condition is easy to check.
For ccut-interpolation, the critical case is f = pass f ′, with the partition ⟨[ ],(A,Γ1),Γ2⟩ and deriva-

tion f ′ : A | Γ1,Γ2 ⊢C. In this case, we apply inductive hypothesis of scut-interpolation on f ′ and obtain
derivations g′ : A | Γ1 ⊢ D and h′ : D | Γ2 ⊢ C, the desired derivations are pass g′ : − | A,Γ1 ⊢ D and
pass h′ : − | D,Γ2 ⊢C, i.e. the partition of A,Γ1 is itself and the list of formulae is the singleton list [D].
The variable condition is automatically satisfied.

Given f : S | Γ ⊢ C , if we apply scut-interpolation with the partition ⟨Γ0,Γ1⟩, and then apply the
admissible scut rule on the resulting g and h, we obtain an equivalence f ⊜ scut(g,h). A similar result
also holds for ccut-interpolation.

Theorem. For any formulae A and C, if A ⊸C is provable, then there exists a formula B such that both
A ⊸ B and B ⊸C are provable, and var(B)⊆ var(A)∩var(C).

Proof. A ⊸C being provable means that there is a derivation f : − | ⊢ A ⊸C, then by the invertibility
of ⊸R [14], there exists a derivation f ′ : − | A ⊢ C. By applying scut-interpolation on f ′ with the
partition ⟨[A], [ ]⟩, we get a formula B and two derivations g′ : − | A ⊢ B and h′ : B | ⊢C, where var(B)⊆
var(s(A), [ ]) = var(A) and var(B)⊆ var([ ],C) = var(C). The formulae A ⊸ B and B ⊸C are proved by
the derivations ⊸R g′ : − | ⊢ A ⊸ B and ⊸R(pass h′) : − | ⊢ B ⊸C, respectively.
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The arguments above also apply to the sequent calculus for left skew monoidal categories in [17].
The statement of ccut-interpolation does not align with the general structure of interpolation in non-

commutative substructural logic, because the general form of the statement is unprovable in LSkG. To
illustrate this, consider the following statement:

(ccut′-interpolation) Given f : S | Γ ⊢ C and any partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exist a for-
mula D and two derivations g : − | Γ1 ⊢ D and h : S | Γ0,D,Γ2 ⊢ C, and var(D) ⊆ var(Γ1)∩
var(s(S),Γ0,Γ2,C).

The critical case is f =⊗R( f ′, f ′′) with the partition ⟨Γ0,(Γ
′
1,Γ

′′
1),Γ2⟩ and two derivations f ′ : S |Γ0,Γ

′
1 ⊢

A and f ′′ : − | Γ′′
1,Γ2 ⊢ B. By induction on f ′ and the partition ⟨Γ0,Γ

′
1, [ ]⟩, and on f ′′ and the partition

⟨[ ],Γ′′
1,Γ2⟩ respectively, we have a formula D, g′ : − | Γ′

1 ⊢ D, and h′ : S | Γ0,D ⊢ A and a formula E,
g′′ : − | Γ′′

1 ⊢ E and h′′ : − | E,Γ2 ⊢ B. We obtain ⊗R(g′,g′′) : − | Γ′
1,Γ

′′
1 ⊢ D⊗E and ⊗R(h′,h′′) : S |

Γ0,D,E,Γ1 ⊢ A⊗B, so the last step is to produce D⊗E in the latter. But we get stuck because ⊗L cannot
be applied on formulae in context.

For example, suppose f = ⊗R( f ′, f ′′) : X | Y,Z ⊢ (X ⊗Y )⊗ Z where f ′ : X | Y ⊢ X ⊗Y and f ′′ :
− | Z ⊢ Z, then given the partition ⟨[ ],(Y,Z), [ ]⟩, our goal is to find a formula D and two derivations
g : − | Y,Z ⊢ D and X | D ⊢ (X ⊗Y )⊗ Z. Because Y and Z are atomic, the only possibility is that
D = Y ⊗Z, however, the sequent X | Y ⊗Z ⊢ (X ⊗Y )⊗Z does not have a proof in LSkG.

??
X | Y ⊗Z ⊢ X ⊗Y

??
− | ⊢ Z

X | Y ⊗Z ⊢ (X ⊗Y )⊗Z
⊗R

X | ⊢ X
ax ??

− | ⊢ Y
X | ⊢ X ⊗Y

⊗R

??
Y | Z ⊢ Z

Y ⊗Z | ⊢ Z
⊗L

− | Y ⊗Z ⊢ Z
pass

X | Y ⊗Z ⊢ (X ⊗Y )⊗Z
⊗R

In general, the rule
S | Γ,A,B,∆ ⊢C

S | Γ,A⊗B,∆ ⊢C
⊗C

is not admissible in LSkG.

3 Formalization

In this ongoing work, we show that sequent calculi for left skew monoidal (closed) categories enjoy
Craig interpolation. The proofs of two statements of generalized interpolation are formalized in the
proof assistant Agda. The code is available at

https://github.com/niccoloveltri/code-skewmonclosed/tree/interpolation.

For the future, we would like to extend the result to other semi-substructural logics in [18, 20].
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