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1 Introduction
The geometry of interaction program was proposed by Girard [1] shortly after the
inception of linear logic. In opposition to traditional denotational semantics – e.g.
domains –, the goi program aims at giving an account of the proofs and programs
which also interprets their dynamical features, i.e. cut-elimination/execution. In
its first approximation, the program provides an interpretation of proofs which
has been thoroughly studied and led to numerous applications. A second aspect
of the program, much less understood, consists in defining models of linear logic
based on a reconstruction of types based on the interaction between proofs (or
the generalisation of proofs).

The technique, also used in Ludics [2] and Interaction Graphs models [5, 6, 7,
8], is based on bi-orthogonality techniques, very similar to Hyland and Schalk’s
double gluing [3], as well as Krivine’s classical realisability [4]. While several
constructions exist, it has been difficult to extract the fundamental properties
which are used to construct the model and separate them from non-essential
properties related to the framework considered (graphs, operators, flows, etc.).

The present work reports on an axiomatic presentation of linear realisability.
In a way, this work is inspired by the PCA-based definition of realisability
for intuitionnistic logic. We therefore define an equivalent to the notion of
PCA from which it is possible to define, by a generic construction, models of
multiplicative-additive linear logic (and possibly exponentials).

We here only sketch the approach, which is fully developed in [9].

2 Non-localised realisability
The first definition is very close to that of PCA. Instead of having a set of
programs equipped with a notion of application and some axioms stating the
existence of specific combinators, we here require the existence of an associative
operation together with a compatible notion of measurement.

Definition 1. A multiplicative linear realisability situation is a tuple (P,Ex, J·, ·Km)
where P is a set, Ex : P × P → P is an abstract notion of execution, J·, ·Km :
P × P → Θ is a measurement in a commutative group Θ, such that:

1



• Associativity of execution:

Ex(Ex(p1, p2), p3) = Ex(p1,Ex(p2, p3)),

• Trefoil property / 2-cocycle:

JEx(p1, p2), p3Km + Jp1, p2Km = Jp1,Ex(p2, p3)Km + Jp2, p3Km.

This axiomatic approach does not allow to reconstruct all connectives, but
is enough to recover two essential operations: the linear implication and the
additive conjonction.

One defines the notion of project which is a pair (a, p) where a ∈ Θ and
p ∈ P , as well as a notion of orthogonality on those1, based on the measurement
J·, ·Km. The notion of type is then defined as sets of programs equal to their
bi-orthogonal. Given two types A, B, one can naturally define two constructions:

A ⊸ B = {p | ∀a ∈ A,Ex(p, a) ∈ B},
A ::B = {Ex(a, b) | ∀a ∈ A,∀b ∈ B}‹‹.

Those constructions can be shown to be dual, i.e. A ⊸ B = (A⊗B‹)‹.
A more involved argument shows that one can consider the set Θ[P ] (for-

mal linear combinations of elements of P ) and that this set has a naturally
induced structure of linear realisability situation2. By considering the same
bi-orthogonality construction on those, one can still define the connectives :: and
⊸, but it is also possible to define a cartesian product &. Putting all of this
together, we have the following result.

Theorem 2. From an multiplicative linear realisability situation, one can define
bi-orthogonality based models of linear implication (hom object) and additive
conjunction (cartesian product).

3 Localised realisability
The models defined above do not possess low-level constructions corresponding
to non-reversible connectives, i.e. ⊗ and ⊕. This is corrected by considering
localised linear realisability models. Note that all known linear realisability models
are instances of this more involved definition.

In the following, we write A ⊻B the symmetric difference of A and B.

Definition 3 (A localised linear realisability situation). A localised (multiplica-
tive) linear realisability situation is given by a boolean algebra B, and a tuple
(P, ϕ,Ex, J·, ·Km) where P is a set, ϕ is a map P → B, the execution satisfies3
Ex : PA×PB → PA⊻B is an abstract notion of execution, and J·, ·Km : P×P → Θ
is a measurement in a commutative group Θ, such that:

1The notion of orthogonality is not unique, but we will not go in further details here.
2Here again, we are skipping some details: we get an additive situation, which is essentially

the extension of the above definition with an additional map P → Θ satisfying some conditions.
3We write here PA the fiber above A, i.e. the subset PA of P such that p ∈ PA implies

ϕ(p) ∈ A.
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• (Associativity of execution) When defined,

Ex(Ex(p1, p2), p3) = Ex(p1,Ex(p2, p3)).

• (Trefoil – or 2-cocycle – Property) When defined:

JEx(p1, p2), p3Km + Jp1, p2Km = Jp1,Ex(p2, p3)Km + Jp2, p3Km.

In this refined framework, one can consider the set Θ[P ], and define projects
and types as explained above. The essential difference with the previous case is
that the execution of disjoint programs corresponds to a direct sum, allowing for
the interpretation of the tensor product. In a similar way, locativity allows for
the interpretation of the additive disjunction ⊕. It is then possible to show that
those constructions are dual to the ` (or equivalently ⊸) and & connectives
(which are defined as in the previous section).

Theorem 4. From a localised multiplicative linear realisability situation, one
can define bi-orthogonality based models of multiplicative-additive linear logic.
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