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This is work in progress and may be missing essential references; I want
to present it at TLLA to find out what I might be missing.

Consider the relational model Rel of linear logic. Formulas are inter-
preted as sets, logical connectives are interpreted using categorical structure
inherited from the category Set of sets and the exponential modality ! is in-
terpreted by the finite multiset comonad (equivalently, the free commutative
monoid comonad). Linear logic proofs relating formulas are interpreted as
relations between sets interpreting those formulas.

The present work begins from the observation that there are two types
of coefficients implicitly involved in this model.

First, we may view a relation A → B as a matrix indexed by A ×B with
entries in the two-element lattice {⊺,�}. Generalizing to a suitable semiring
produces weighted relational models, [5]. Often this semiring is required to
be complete or continuous. We can also ‘categorify’, replacing the partially
ordered set with a category; a common choice is the category of sets. Up
to adjusting some details of the presentation, the latter results in a model
closely related to Girard’s normal functors [3].1

Second, the natural numbers N appear as coefficients in the finite multi-
sets of the exponential modality. More precisely, the set of finite multisets
over a set A can be identified with the free N-module with generators in A.
Here too we can perform a substitution of semirings: using the two-element
semiring instead yields the finite powerset comonad and a ‘qualitative’ model
of linear logic, for instance. More interestingly, N categorifies to Bij, the
groupoid of finite sets and bijections, with the free Bij module over a cate-
gory A being the free symmetric monoidal category on A, which yields Joyal’s
analytic functors model [4].

1The starting point for this work was a close analysis of Girard’s work on Normal
Functors with Thomas Seiller and William Troiani.
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Recently, a bicategorical standard for models of differential linear logic
has been established by Fiore, Gambino and Hyland [2], with the analytic
functors model as a motivating example. While it has been established that
a pseudodistributive law between (pseudo)monads can produce a model of
linear logic, there are still a limited number of examples around.

In this talk, we will establish the existence of distributivity laws between
two types of pseudomonad induced by rig categories, a common generaliza-
tion of the semirings and categories appearing in the above. In so doing, we
unify a broad class of categorical models of linear logic under a common um-
brella which may be exploited in the future to compare and transfer results
between these models.

Symmetric monoidal categories

Definition 1. Let C be a locally small category. We define the free sym-
metric monoidal category on C, denotedM(C) (with monoidal operation
⊕ and unit 0), as follows:

• The objects are formal sums ⊕n−1
i=0 ci of objects of C. Note that n = 0

is allowed, and yields the unit object 0.

• Morphisms of M(C) of type ⊕n−1
i=0 ci →⊕

n′−1
i′=0 c

′
i′ exist only when n = n′

and consist of a pair (σ, f⃗) where σ ∶ [n]→ [n] is a permutation of the
n-element set [n] = {0, . . . , n − 1} and f⃗ = {fi ∶ ci → c′

σ(i)}
n
i=1 is a set of

morphisms of C.

• The monoidal sum is defined by ‘concatenation’ as one would expect.

Free monoidal categories form the foundation of our framework. Observe
that there is a full and faithful functor C→M(C) sending c to the singleton
sum at that object.2

We can define a ‘tensor product’ of monoidal categories enabling us to
build new monoidal categories.

Definition 2. Let E ,E ′ be symmetric monoidal categories. We define the
tensor product of E and E ′ (over FinSetbij), denoted E ⊠ E ′, to be the
symmetric monoidal category whose objects are formal monoidal sums of

2Beware that for us, ‘monoidal functors’ will refer to strong monoidal functors unless
otherwise stated, in contrast with weaker lax or oplax monoidal functors.
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objects of the form X ⊠X ′ (with X ∈ E and X ′
∈ E

′), with 0⊠ 0′ as the unit.
We add isomorphisms,

X ⊠ (X ′
0 ⊕X

′
1) ≅ (X ⊠X ′

0)⊕ (X ⊠X ′
1) (1)

(X0 ⊕X1) ⊠X
′
≅ (X0 ⊠X

′
)⊕ (X1 ⊠X

′
) (2)

0 ⊠X ′
≅ 0 ⊠ 0′ ≅X ⊠ 0′, (3)

each of which is required to be natural and compatible with symmetries in
each argument. Morphisms are composites of these with permutations of
summands and morphisms of the form ⊕n

i=1 xi ⊠ x
′
i.

Rig categories

The free symmetric monoidal category category M(1) on the trivial one-
object category 1 can be identified with the groupoid Bij of finite sets and
bijections. Just as the free commutative monoid on one generator N is a
(commutative) rig, Bij carries the structure of a rig category.

Definition 3. A rig category (also known as a bimonoidal category) is a
pseudomonoid in the monoidal 2-category (MON,⊠,1). More concretely, a
rig category is a symmetric monoidal category (R,⊕,0) carrying a monoidal
functor ⊗ ∶ R ⊠R → R called the monoidal product, symmetry isomor-
phisms3 and a unit object 1 for the monoidal product. Being monoidal
means that ⊗ distributes over ⊕ on both sides and 0 is an absorbing element
for ⊗, in the sense that 0⊗B ≅ 0 ≅ B ⊗ 0.

A rig functor is a functor F ∶ R → R
′ between rig categories equipped

with natural isomorphisms F (X⊕X ′
) ≅ F (X)⊕F (X ′

), F (X⊗X ′
) ≅ F (X)⊗

F (X ′
), F (0) ≅ 0 and F (1) ≅ 1 commuting with the structural isomorphisms

as one would expect.

Remark 4. The coherence results for the structural isomorphisms of rig
categories were established by Laplaza [6]. Loregian and Trimble focus on
the special case where ⊕ is a coproduct in [7] and supplement this structure
with a ‘derivation’; we may explore the need for this extra structure later on.
Baez, Moeller and Trimble study the further specialised case of rig categories
enriched in vector spaces in [1] in the context of representation theory. This

3Beware that symmetry isomorphisms are not a general requirement; rather, we are
restricting attention to symmetric rig categories.
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illustrates the potential wealth of examples which the present work might
give access to if successful.

Objects of rig categories will serve as coefficients in our constructions,
with the categorical structure reflecting relationships between these. It should
not be surprising, given the analogy with commutative ri(n)gs, that we can
define modules of rig categories.

Definition 5. Let R be a rig category. A (left) R-module consists of a
monoidal category E equipped with a monoidal functor ● ∶ R ⊠ E → E called
an R-action (the tensor product in the domain comes from the additive
structure on R), as well as structural isomorphisms S ● (R ●X) ≅ (S ⊗
R) ●X and 1 ●X ≅X natural in objects R,S ∈R and X ∈ E .

An R-linear functor (E , ●) → (E
′, ●′) is a monoidal functor E → E ′

respecting the R-action up to isomorphisms required to be coherent with the
structural isomorphisms on the domain and codomain.

For R a (locally small) rig category and C a small category, we can now
define

MR(C) ∶=R ⊠M(C), (4)

the free R-module over C. As the name would suggest, this has the structure
of an R-module given by R ● (S ⊠C) ∶= (R⊗ S) ⊠C.

Another way to construct an R-module is with functors with codomain
R. We switch notation here, since the rig category involved will serve as a
supply of coefficients in the other sense mentioned in the introduction.

Lemma 6. Let C be a small category and S any rig category. Then [Cop,S]
is an S-module via the ‘point-wise action’:

(S ● F )(C) ∶= S ⊗ (F (C)).

As stated, the construction of Lemma 6 ignores any R-linear structure on
C, and for an arbitrary S there need not be a functor C→ [Cop,S] to act as
the unit of a prospective monad structure for the functor C ↦ [Cop,S]. To
complete the picture, we therefore constrain both the second rig category S
and the class of categories C which we consider, as follows.

Lemma 7. Let S be a rig category and C a small category enriched over
(the multiplicative structure of) S. Then there is a Yoneda embedding C →
[Cop,S], and such functors assemble to make [(−)

op,S] a relative pseu-
domonad on the class of small S-categories.
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Note that a category cannot be enriched in Bij in a non-trivial way, so this
is a constraint on S as well as C. For simplicity, we treat only subcategories of
Set here, since going further would require discussion of enriched monoidal
categories. Recall that for a small monoidal category C, Day convolution
provides a monoidal structure on [Cop,Set] making the Yoneda embedding
a monoidal functor.

Proposition 8. Let C be an R-module. Then [Cop,Set] admits an R-module
structure making the Yoneda embedding an R-module homomorphism.

This construction yields the distributive law witnessing that MR(−) de-
fines a comonad on the Kleisli category of [(−)

op,Set], so we end up with a
model of linear logic. It remains to reconstruct differentiation!

If there is time, we will discuss conditions on S (and/or constraints on
C) which enable these constructions to be reproduced for more general rig
categories of weights. If successful, this work will show how varying the rig
categories involved yields a systematic understanding of how ‘decategorifying’
affects the content of models.
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