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Abstract

This work presents the correspondance between a ultrafilter of the ground model which natu-
rally arises from realizability algebras and the ultrafilter which generates the realizability model.

1 Context
Griffin [4] enables to extend Curry-Howard correspondence to classical logic. Indeed, in [4] it has
been shown that Pierce’s Law (¬A → A) → A is an admissible type for call/cc. This has been
a major achievement in the constructivization of mathematics, since proof-programs correspondence
was hitherto limited to intuitionistic logic. About this latter, in 1945 Kleene [5] exposed a method,
namely realizability, which employed recursive functions as witnesses for the satisfiability of a formula
for a fixed language, which eventually was a generalisation of intuitionistic semantics. Combining
Griffin’s result with Kleene’s tradition, Krivine [6] has developed realizability for classical set theory,
introducing a structure called realizability algebra.

Definition 1. A realizability algebra is a tuple A = ⟨Λc,Π,≻,⊥⊥⟩, where:

• Λc is the set of terms genereted by

t := x | cc |λx.t | (t)t | kπ

π ∈ Π

with kπ continuation of π;

• Π is the set of stacks genereted by

π := π0 | t � π

π0 ∈ Π0, t ∈ Λc

for a fixed set Π0 of stack constants;

• ≻ is a reduction relation ⟨t, π⟩ ≻ ⟨u, ρ⟩ between processes ⟨t, π⟩, ⟨u, ρ⟩, for t, u ∈ Λc, π, ρ ∈ Π. For
sake of readability (and history), we note t ⋆ π for a process ⟨t, π⟩. ≻ is defined as the transitive
closure of following rules

λx.t ⋆ u � π ≻ t[u/x] ⋆ π, (grab)
(t)u ⋆ π ≻ t ⋆ u � π, (push)
cc ⋆ t � π ≻ t ⋆ kπ � π, (save)
kπ ⋆ t � ρ ≻ t ⋆ π; (restore)

• ⊥⊥, called pole, is a fixed subset of processes closed for anti-reduction, i.e., for t, u ∈ Λc, π, ρ ∈ Π,

t ⋆ π ≻ u ⋆ ρ, u ⋆ ρ ∈ ⊥⊥ =⇒ t ⋆ π ∈ ⊥⊥ .

⊥⊥ induces a notion of orthogonality between sets of λc-terms and sets of stacks. Then, for any set of
stacks X ⊆ Π we can define

X⊥⊥ := {t ∈ Ϙ | ∀π ∈ X(t ⋆ π ∈ ⊥⊥)}.
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In order to have a consistent set of realized formulæ, fix a set Ϙ of Λc, such that cc ∈ Ϙ,Λ◦ ⊂ Ϙ and
∀t ∈ Ϙ ∃π ∈ Π(t ⋆ π ̸∈ ⊥⊥)1. Ϙ is the set of quasi-proofs. For any set X ⊆ Π, X is realized X⊥⊥∩Ϙ ̸= ∅.
For any formula F of a language L, a set ||F || ⊂ Π is associated to it, and F is said to be realized if
(Ϙ∩ ||F ||⊥⊥) ̸= ∅, where ||F ||⊥⊥ ⊆ Λc is the orthogonal of ||F || with the respect to ⊥⊥. A term t ∈ Λc is
a realizer for F , in symbols t ⊩ F , if t ∈ (||F ||⊥⊥ ∩ Ϙ). We denote ⊩ F if there exists a realizer for F .

This new application has therefore produced set-theoretical models that supply programs associated
to ZF-theorems.

During last twenty years, Krivine has realized relevant mathematical principles, like the Axiom of
Dependant Choice (DCℵ0

), which can be viewed as a further extension of proof-programs correspon-
dence to (at least) real analysis. Recent developments have extended even further this correspondence,
realizing choice principles on arbitrary cardinals and large cardinals axioms (in [2, 3]). Nowadays,
realizability stands as a well-grounded technique, which enables to built ZF-models encompassing a
“constructive behaviour". For instance, while the formulæ ⊤ ∧ ⊥ → ⊥ and ⊥ ∧ ⊤ → ⊥ can be con-
sidered the same one in a classical set-up, from a computational point of view these have a slightly
different meaning, the former behaving has a right projection, the latter as a left one, hence they are
not realized by the same program in general. In fact, assuming the existence of such a program ⋔,
verifying ⋔⊩ ⊤ ∧ ⊥ → ⊥,⋔⊩ ⊥ ∧ ⊤ → ⊥, introduces non-deterministic processes in the underlying
calculus. Furthermore, it turns out that ⋔ transforms the realizability model in a forcing one. Forcing
technique, a wide-spread tool of modern set-theory developed by Cohen [1] in 1963, can be viewed as a
special case of realizability, where every formula is realized by the same program, thus it is considered
as a trivialization of realizability.

2 Renovating realizability
We present an improved formalism for Krivine’s realizability, developed by Fontanella, Geoffroy and
Matthews (in [2, 3, 7]) which strengthens this framework with a forcing-like definition of the realizability
model.

For a fixed modelM of ZF, the realizability model N generated by a realizability algebra A ∈M
is a first-order model satisfying formulæ of L = {̸ ε , ̸∈,⊆}. L is a slight modification of set theory
signature, due to technical reasons, which defines a conservative extension of ZF, namely ZFε

ZFε :=



∈-Extensionality ≡ ∀x∀y(x ∈ y ↔ ∃z ε y(x ≃ z));
⊆-Extensionality ≡ ∀x∀y(x ⊆ y ↔ ∀z ε x(z ∈ y));

Foundation ≡ ∀x⃗∀a(∀x(∀y ε xF (y, x⃗)→ F (x, x⃗))→ F (a, x⃗));
Comprehension ≡ ∀x⃗∀a∃b∀x(x ε b↔ (x ε a ∧ F (x, x⃗)));

Paring ≡ ∀a∀b∃c(a ε c ∧ b ε c); F ∈ FL
Union ≡ ∀a∃b∀x ε a∀y ε x(y ε b);

Power Set ≡ ∀a∃b∀x∃y ε b∀x(z ε y ↔ (z ε a ∧ z ε x));
Collection ≡ ∀x⃗∀a∃b∀x ε a(∃y F (x, y, x⃗)→ ∃y ε b F (x, y, x⃗));

Infinity ≡ ∀x⃗∀a∃b(a ε b ∧ (∃y F (x, y, x⃗)→ ∃y ε b F (x, y, x⃗)))


.

̸∈ is the negation of membership, ⊆ is the subset relation. ̸ ε is the negation of a non-extensional
membership relation. Extensional equality, defined as usual by use of ⊆, is denoted as ≃2. Non-
extensional equality is denoted as =3.

Since the realizability relation is defined inductively on the structure of formulæ, it suffices to
well-define it for atomic formulæ of the language. For this purpose, we introduce names.

Definition 2. The class of A-names is defined inductively as

• MA
0 := ∅;

1We denote Λ◦ the set of closed λ-terms. The last condition is necessary to obtain a model. Observe that for ⊥⊥ ≠ ∅,
Ϙ ̸= Λc. Indeed, if t ⋆ π ∈ ⊥⊥, for any ρ ∈ Π, (kπ)t ⋆ ρ ≻ t ⋆ π =⇒ (kπ)t ⋆ ρ ∈ ⊥⊥, thus (kπ)t ̸∈ Ϙ.

2x ≃ y := x ⊆ y ∧ y ⊆ x
3x = y := ∀z(x ̸ ε z ←→ y ̸ ε z)
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• MA
α+1 :=℘(MA

α ×Π), for α ∈ Ord;

• MA
λ :=

⋃
α∈λ

℘(MA
α ×Π), for λ limit ordinal;

• MA :=
⋃

α∈Ord M
A
α .

Names allow to interpret closed L-formulæ into ℘(Π). Indeed, we will define by induction on the
structure of F ∈ FL the set of falsity values ||F || ⊆℘ (Π). Names play a fundamental role in the
atomic-formulæ cases and the universal-quantifier case. In order to define ||F ||, a definition of rank
for names is needed.

Definition 3. For every a ∈MA, we define the rank of a in MA as

rankA(a) = min{α ∈ Ord|a ∈MA
α+1}.

Definition 4. We define ||a ̸ ε b|| := {π ∈ Π | ⟨a, π⟩ ∈ b} for every a, b ∈MA. Moreover, by induction
on ⟨rankA(a), rankA(b)⟩, we set:

• ||a ̸∈ b|| :=
⋃

c∈MA{t � t′ � π ∈ Π | ⟨c, π⟩ ∈ b, t ⊩ c ⊆ a, t′ ⊩ a ⊆ c}

• ||a ⊆ b|| :=
⋃

c∈MA{t � π ∈ Π | ⟨c, π⟩ ∈ a, t ⊩ c ̸∈ b}

The set of falsity values ||F || ⊆℘(Π) for a formula F ∈ FL is defined by induction of the structure of
F :

• ||⊤|| := ∅, ||⊥|| := Π;

• atomic cases as above;

• ||G1 → F2|| := {t � π ∈ Π | t ∈ ||F1||⊥⊥, π ∈ ||F2||};

• ||∀xF (x)|| :=
⋃

a∈MA ||F (a)||.

Following Definition 1, It is possible to associate a realizer t ∈ ||F ||⊥⊥ for any formula F - if it exists.
As expected, ZF-axioms are realized (see [6]).

MA allows to define basic objects of N in a more explicit way, consequently it represents an
improvement in the comprehension of pre-existing results. A class of canonical representatives for
elements of the ground model is defined, denoted as ℸM4.

Definition 5. By induction on ρ(a) we define ℸ(a) = {⟨ℸ(b), π⟩ | b ∈ a, π ∈ Π}. We denote ℸ(M) =
{ℸ(a)|a ∈M}.

Among the elements of ℸM , ℸ2 = {⟨ℸb, π⟩ |b = 0, 1;π ∈ Π} turns out to have a relevant role,
as the canonical representative of 2 in N may contain arbitrary copies of 0 and 1, distinguished by
the relation ε introduced with the language L above. The cardinality of ℸ2 is strictly related with
realizability model as ⊩ ∀x εℸ2(x = ℸ0∨x = ℸ1) if, and only if, N is a forcing model. The left-to-right
implication holds if one assumes that an instruction quote is in Λc, this term acting like an enumerator
for closed λc-terms. Thus, ℸ2 allows to establish whether A produces a forcing model or not.

In order to get more information about the nature of N , it is possible to add a boolean-algebra
structure on ℸ2, induced by the minimal boolean algebra ⟨2,≤ 0, 1⟩ in M, to fix a complete theory
containing the one of realized formulæ. Let ⟨ℸ2, ≤̃,ℸ0,ℸ1⟩ be the induced algebra. With respect to
the extensional equality ≃, it is the minimal boolean-algebra of N . ⟨ℸ2, ≤̃,ℸ0,ℸ1⟩ is a powerful tool to
investigate the structure of the realizability model. Indeed, ⊥⊥-orthogonality induces on the powerset
of Π a preorder ≤ defined as:

Definition 6. For any X,Y ∈℘(Π), X ≤ Y if, and only if, Ϙ∩ (X → Y )⊥⊥ ̸= ∅ (or ⊩ X → Y ), where

X → Y := {t � π ∈ Π | t ∈ X⊥⊥, π ∈ Y }.
4It is a subclass of MA.
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The induced poset has a boolean-algebra structure ⟨℘(Π),≤,Π, ∅⟩, which can be related via represen-
tatives uX ∈MA, for X ∈℘(Π), to the boolean algebra on ℸ2.

Definition 7. For X ∈℘(Π), uX := {⟨ℸ0, π⟩ |π ∈ X}.

Theorem 1. The following results hold:

1. For any X ∈℘(Π), N |= uX ≃ ℸ0 ∨ uX ≃ ℸ1;

2. For any formula F of L, ⊩ F if, and only if, N |= u||F || ≃ ℸ0;

3. G := {X ∈℘(Π) | N |= uX ≃ ℸ0} is an ultrafilter of (℘(Π),≤);

The theorem states that (1.) any uX is extensionally equal either to ℸ0 or to ℸ1, i.e. it is contained in
ℸ25, (2.) formulæ whose falsity value is sent to ℸ0 in N are precisely those that are realized, (3.) these
formulæ generate a filter in ℘(Π) which is contained in a ultrafilter G of ℘(Π), thus G determines a
complete theory containing every realized formula.

Proof. 1. Fix X ∈℘(Π).
First, we show that λx.x ⊩ uX ⊆ε ℸ16.
||uX ⊆ε ℸ1|| =

⋃
c∈MA ||c ̸ ε ℸ1 −→ c ̸ ε uX || =

⋃
c∈MA{t � π | t ∈ ||c ̸ ε ℸ1||⊥⊥, π ∈ ||c ̸ ε uX ||}.

For c ̸= ℸ0, ||c ̸ ε uX || = ∅, thus

||uX ⊆ε ℸ1|| = {t � π | t ∈ ||ℸ0 ̸ ε ℸ1||⊥⊥, π ∈ ||ℸ0 ̸ ε uX ||}

= {t � π | t ∈ ||⊥||⊥⊥, π ∈ X}
= Π→ X

which is realized by the identity λx.x.

Next, we show that ⊩ ℸ0 ε c −→ ℸ1 ⊆ c for any name c ∈MA. Consider falsity values associated with
the formula

||ℸ0 ε c −→ ℸ1 ⊆ c|| = {t � u � π | t ∈ ||ℸ0 ε c||⊥⊥, u ∈ ||ℸ0 ̸∈ c||⊥⊥, π ∈ Π}.

Let t ∈ ||ℸ0 ε c||⊥⊥ = ||(ℸ0 ̸ ε c) → ⊥||⊥⊥. For any λc-term u ∈ ||ℸ0 ̸∈ c||⊥⊥, uWW ∈ ||ℸ0 ̸ ε c||⊥⊥,7

thus t(uWW ) ∈ ||⊥||⊥⊥ for t ∈ ||ℸ0 ε c||⊥⊥. Then, λxy.x(yWW ) ⊩ ℸ0 ε c −→ ℸ1 ⊆ c, in particular for
c = uX .

Observe that for π ∈ ||ℸ0 ̸ ε uX ||, kπ ∈ ||ℸ0 ε uX ||⊥⊥. Consider now

||∀x(uX ̸≃ ℸ1 −→ x ̸ ε uX)|| = {t � π | t ∈ ||(uX ⊆ ℸ1 ∧ ℸ1 ⊆ uX) −→ ⊥||⊥⊥, π ∈ X};

as just shown, I ⊩ uX ⊆ ℸ1; moreover, from the discussion above, (λxy.x(yWW ))kπ ∈ ||ℸ1 ⊆ uX ||⊥⊥

for any π ∈ Π, thus tI(λxy.x(yWW ))kπ ∈ ||⊥||⊥⊥. This shows that

λx.ccλk.xI(λxy.x(yWW ))k ⊩ ∀x(uX ̸≃ ℸ1 −→ x ̸ ε uX)

and implies that there exists a realizer for uX ̸≃ ℸ1 −→ ∀x(x ̸ ε uX).

Lastly, it suffices to show that ⊩ ∀x(∀y(y ̸ ε x)←→ x ≃ ℸ0). The formula can be reduce to ∀x(∀y(y ̸ ε
x)←→ x ⊆ ℸ0).
We first show the left-to-right implication. ||∀x(∀y(y ̸ ε x) −→ x ⊆ ℸ0)|| =

⋃
c∈MA{t � π | t ∈ ||∀y(y ̸ ε

c)||⊥⊥, π ∈ ||c ⊆ ℸ0||}. Let t � π ∈ ||∀x(∀y(y ̸ ε x) −→ x ⊆ ℸ0)|| for a fixed c ∈MA. Then,

π = u � ρ ∈
⋃

d∈MA

{u � ρ |u ∈ ||d ̸∈ ℸ0||⊥⊥, π ∈ ||d ̸ ε c||}.

5This is not the case from the non-extensional point of view: for X ̸= Π,N |= (uX ̸= ℸ0 ∧ uX ̸= ℸ1).
6x ⊆ε y := ∀z(z ̸ ε y → z ̸ ε x). It is easy to show that ZFε ⊢ ∀x, y(x ⊆ε y → x ⊆ y)
7Y := (λxλy.(y)(x)xy)λxλy.(y)(x)xy, W := (Y )λxλy.(y)xx. It is easy to see that for any c ∈ MA, W ⊩ c ⊆ c, then

λx.xWW ⊩ c ≃ c.
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Since t ⋆ ρ ∈ ⊥⊥, λxy.x ⊩ ∀x(∀y(y ̸ ε x) −→ x ⊆ ℸ0). We show the left-to-right implication. ||∀x(x ⊆
ℸ0 −→ ∀y(y ̸ ε x))|| =

⋃
c∈MA{t � π | t ∈ ||c ⊆ ℸ0||⊥⊥, π ∈ ||∀y(y ̸ ε c)||}. Fix such a falsity value t � π.

t ∈ ||∀y(y ̸∈ ℸ0 −→ y ̸ ε c)||⊥⊥. It is easy to see that ||d ̸∈ ℸ0|| = ∅ for any d ∈ MA, hence any u ∈ Ϙ

realizes d ̸∈ ℸ0, which implies tu ∈ ||d ̸ ε c||⊥⊥. Without loss of generality, suppose u = I. Then,
tI ∈ ||∀y(y ̸ ε c)||⊥⊥, which proves λx.xI ⊩ ∀x(x ⊆ ℸ0 −→ ∀y(y ̸ ε x)).

To conclude, we showed that for any X ∈ Π

⊩ uX ̸≃ ℸ1 −→ ∀x(x ̸ ε uX),

⊩ ∀x(x ̸ ε uX)←→ uX ≃ ℸ0,

which implies that
⊩ uX ̸≃ ℸ1 −→ uX ≃ ℸ0.

2. For any closed formula F ∈ FL with parameters in MA

⊩ F iff ∃t ∈ Ϙ∀π ∈ ||F ||(t ⋆ π ∈ ⊥⊥) iff ∃t ∈ Ϙ (t ⊩ ℸ0 ̸ ε u||F ||) iff
iff ∃t ∈ Ϙ (t ⊩ ∀x(x ̸ ε u||F ||)) iff ⊩ u||F || ≃ ℸ0

3. Consider G = {X ∈℘(Π) | N |= uX ≃ ℸ0}.
- G is upward closed for ≤. Let X ∈ G, Y ∈℘ (Π), X ≤ Y . By hypothesis, there exists u ⊩ ∀x(x ̸ ε
uX), t ⊩ X −→ Y , the latter equivalent to t ⊩ ∀x(x ̸ ε uX) −→ ∀x(x ̸ ε uY ). Thus, (t)u ⊩ ∀x(x ̸ ε uY ).

- G is closed for meets. Fix X,Y ∈ G. Then, ||∀x(x ̸ ε uX∧Y )|| = ||ℸ0 ̸ ε uX∧Y )|| = X ∧ Y 8. By
hypothesis, there exists t, u ∈ Ϙ such that t ⊩ X,u ⊩ Y , thus λx.xtu ⊩ ∀x(x ̸ ε uX∧Y ).

- G is maximal. Consider X ∈℘ (Π). We show that ⊩ (uX ≃ ℸ0 −→ ⊥) ←→ uX→⊥ ≃ ℸ0, which is
equivalent to ⊩ (∀x(x ̸ ε uX) −→ ⊥)←→ ∀x(x ̸ ε uX→⊥). Observe that

||∀x(x ̸ ε uX) −→ ⊥|| = {t � π | t ∈ ||∀x(x ̸ ε uX)||⊥⊥, π ∈ Π}

= {t � π | t ∈ ||ℸ0 ̸ ε uX ||⊥⊥, π ∈ Π}

= {t � π | t ∈ X⊥⊥, π ∈ Π}
= ||ℸ0 ̸ ε uX→⊥||
= ||∀x(x ̸ ε uX→⊥)||

Thus, λx.xII ⊩ (∀x(x ̸ ε uX) −→ ⊥)←→ ∀x(x ̸ ε uX→⊥).
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