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Abstract

This work presents the correspondance between a ultrafilter of the ground model which natu-
rally arises from realizability algebras and the ultrafilter which generates the realizability model.

1 Context

Griffin [4] enables to extend Curry-Howard correspondence to classical logic. Indeed, in [|4] it has
been shown that Pierce’s Law (—wA — A) — A is an admissible type for call/cc. This has been
a major achievement in the constructivization of mathematics, since proof-programs correspondence
was hitherto limited to intuitionistic logic. About this latter, in 1945 Kleene [5] exposed a method,
namely realizability, which employed recursive functions as witnesses for the satisfiability of a formula
for a fixed language, which eventually was a generalisation of intuitionistic semantics. Combining
Griffin’s result with Kleene’s tradition, Krivine |6] has developed realizability for classical set theory,
introducing a structure called realizability algebra.

Definition 1. A realizability algebra is a tuple A = (A, II, >, 1), where:

e A is the set of terms genereted by e II is the set of stacks genereted by
t = x|cc| x| ()] kx o= molt.m
rell mo € o, t € Ac
with k. continuation of m; for a fixed set Iy of stack constants;

e > is a reduction relation (¢, 7) > (u, p) between processes (t, ), (u, p), for t,u € Ac,m, p € II. For
sake of readability (and history), we note ¢ * 7 for a process (t, 7). > is defined as the transitive
closure of following rules

Azt xu.m > tu/x] * T, (grab)
Burm = txu.m, (push)
ccktam =tkky.m, (save)
kextep=txm (restore)

e |, called pole, is a fixed subset of processes closed for anti-reduction, i.e., for t,u € A, m, p € 11,

txm>uxp,uxpel = txmel.

1L induces a notion of orthogonality between sets of A\.-terms and sets of stacks. Then, for any set of
stacks X C II we can define

Xt = teQ|vreX(trre )}



In order to have a consistent set of realized formulse, fix a set Q of A, such that cc € Q, A° C Q and
Vte QIr el(t*m & JL Q is the set of quasi-proofs. For any set X CII, X is realized xti nQ # 0.
For any formula F' of a language £, a set ||F|| C II is associated to it, and F is said to be realized if

Qn ||F||JL) # (), where HFH—”- C A is the orthogonal of ||F|| with the respect to L. A term ¢ € A¢ is
a realizer for F', in symbols ¢t I+ F'| if t € (HFHJ— N Q). We denote I F' if there exists a realizer for F'.

This new application has therefore produced set-theoretical models that supply programs associated
to ZF-theorems.

During last twenty years, Krivine has realized relevant mathematical principles, like the Axiom of
Dependant Choice (DCy, ), which can be viewed as a further extension of proof-programs correspon-
dence to (at least) real analysis. Recent developments have extended even further this correspondence,
realizing choice principles on arbitrary cardinals and large cardinals axioms (in [2, [3]). Nowadays,
realizability stands as a well-grounded technique, which enables to built ZF-models encompassing a
“constructive behaviour". For instance, while the formulee T A L — 1 and L AT — L can be con-
sidered the same one in a classical set-up, from a computational point of view these have a slightly
different meaning, the former behaving has a right projection, the latter as a left one, hence they are
not realized by the same program in general. In fact, assuming the existence of such a program M,
verifying MIF TA L — L Mk L AT — 1, introduces non-deterministic processes in the underlying
calculus. Furthermore, it turns out that M transforms the realizability model in a forcing one. Forcing
technique, a wide-spread tool of modern set-theory developed by Cohen [1] in 1963, can be viewed as a
special case of realizability, where every formula is realized by the same program, thus it is considered
as a trivialization of realizability.

2 Renovating realizability

We present an improved formalism for Krivine’s realizability, developed by Fontanella, Geoffroy and
Matthews (in |2} 3 7]) which strengthens this framework with a forcing-like definition of the realizability
model.

For a fixed model M of ZF, the realizability model N generated by a realizability algebra A € M
is a first-order model satisfying formule of £ = {#,¢,C}. L is a slight modification of set theory
signature, due to technical reasons, which defines a conservative extension of ZF, namely ZF.

€-Extensionality = VaVy(z € y + Jzey(x ~ 2));
C-Extensionality = VaVylx Cy <+ Vzez(z €y));
Foundation = ViVa(Vzx(Vyex F(y, %) = F(z,%)) = F(a,2));
Comprehension = VYi@¥aIbVz(xeb « (rea A F(x,T)));
ZF. = Paring = VaVbic(aecAbec); FeF,
Union = Va3WWreaVyex(yeb);
Power Set = Va3bVzyebVa(zey < (zea A zex));
Collection = ViNVa3Wrea(3yF(z,y,%) — JyebF(z,y,7));
Infinity = ViVa3blaebA 3y F(z,y,Z) — JyebF(z,y,T)))

¢ is the negation of membership, C is the subset relation. ¢ is the negation of a non-extensional
membership relation. Extensional equality, defined as usual by use of C, is denoted as :El Non-
extensional equality is denoted as ﬂ

Since the realizability relation is defined inductively on the structure of formulse, it suffices to
well-define it for atomic formula of the language. For this purpose, we introduce names.

Definition 2. The class of A-names is defined inductively as

o Mg :=0;

1We denote A° the set of closed A-terms. The last condition is necessary to obtain a model. Observe that for 1L # (),
Q # Ac. Indeed, if t xm € L, for any p € II, (kx)t xp >t xm = (kx)t xp € L, thus (k)t € Q.
2~y = axCyAyCux

Sp=y :; Ve(x f z+—y £ 2)



o M7, =0 (M} x1I), for a € Ord,
“ Mg =

hd MA = Uanrd M(;t

wex P (MZ < II), for A limit ordinal;

Names allow to interpret closed L-formulee into §(IT). Indeed, we will define by induction on the
structure of F' € F, the set of falsity values ||F|| C§ (II). Names play a fundamental role in the
atomic-formulee cases and the universal-quantifier case. In order to define ||F||, a definition of rank
for names is needed.

Definition 3. For every a € M, we define the rank of a in M as
rank” (a) = min{a € Ord|a € M2 LY

Definition 4. We define ||a # b|| := {7 € I| (a, ) € b} for every a,b € M. Moreover, by induction
on (rank“(a), rank (b)), we set:

o |la €0l :=U.epalt-t'emelll{c,m) €btli-cCa,t' lIFaCc}
o |la Cbl| :=Ueppalt-meIl|{c,m) €a,tl-cgb}

The set of falsity values ||F'|| C #(II) for a formula F' € F. is defined by induction of the structure of
F:

o |[T]|:==0,||L]] := I

e atomic cases as above;

o |Gl o Bl == {t.nell|te||R|L re|Rl}
o [[VeF ()| := Uperra 1F(a)l].

Following Definition |1} It is possible to associate a realizer ¢ € ||F HJL for any formula F' - if it exists.
As expected, ZF-axioms are realized (see [6]).

MA allows to define basic objects of A/ in a more explicit way, consequently it represents an
improvement in the comprehension of pre-existing results. A class of canonical representatives for

elements of the ground model is defined, denoted as 7]\4@

Definition 5. By induction on p(a) we define T(a) = {(7(b),7) |b € a,m € II}. We denote (M) =
{T(a)|a € M}.

Among the elements of TM, 12 = {(Tb,7)|b = 0,1;7 € II} turns out to have a relevant role,
as the canonical representative of 2 in /' may contain arbitrary copies of 0 and 1, distinguished by
the relation e introduced with the language £ above. The cardinality of 712 is strictly related with
realizability model as IF Vz e 72(z = 0V = 1) if, and only if, A is a forcing model. The left-to-right
implication holds if one assumes that an instruction quote is in A, this term acting like an enumerator
for closed Ac-terms. Thus, 712 allows to establish whether A produces a forcing model or not.

In order to get more information about the nature of A/, it is possible to add a boolean-algebra
structure on 12, induced by the minimal boolean algebra (2, < 0,1) in M, to fix a complete theory
containing the one of realized formulee. Let (72, <, 7o, 1) be the induced algebra. With respect to
the extensional equality ~, it is the minimal boolean-algebra of N'. (712, %, 70, 711) is a powerful tool to
investigate the structure of the realizability model. Indeed, I -orthogonality induces on the powerset
of IT a preorder < defined as:

Definition 6. For any X, Y € ©(II), X <Y if, and only if, QN (X — Y)JL # 0 (or - X —Y), where

XoVi={t.rel|te XL rey}

41t is a subclass of M.



The induced poset has a boolean-algebra structure { § (II), <, II, #), which can be related via represen-
tatives uxy € M4, for X € £(I1), to the boolean algebra on 2.

Definition 7. For X € £(II), ux := {(70,7) |7 € X}.

Theorem 1. The following results hold:
1. For any X e Q(II), N Eux ~T0Vux ~ 11;
2. For any formula F of L, = F if, and only if, N = uj )| ~ 70;
3. 6 :={X eQPUI)|N Eux ~ 70} is an ultrafilter of (£ (I1), <);

The theorem states that (1.) any ux is extensionally equal either to 70 or to 71, i.e. it is contained in
9] (2.) formulae whose falsity value is sent to 710 in " are precisely those that are realized, (.) these
formulee generate a filter in §(II) which is contained in a ultrafilter & of §(II), thus & determines a
complete theory containing every realized formula.

Proof. 1. Fix X € Q(10).

First, we show that \z.xz IF ux C, _Ilﬂ

lux Ce Tl = Ueenralle # T — ¢ # ux|] = Uepraft-m [t € lle # TUL, 7 € [le # ux]]}.

For ¢ # 710, ||c £ ux|| = 0, thus

lux C. || ={t.7|t €70 ¢ _IlHJLﬂT € 1|70 # ux||}
= {t.r|te|L]t reXx}
=I—-X
which is realized by the identity Az.x.

Next, we show that IF T0ec — 711 C ¢ for any name ¢ € M. Consider falsity values associated with
the formula

IT0ec — T Cef| = {t.u.n|t e |[T0ec]|L,ue |0 &L, e}

Let t € || T0ec|[L =|(T0 £ ¢) — L|It. For any Acterm u € |70 & ||, uWW € |70 ¢ | L[]
thus t(uWW) € HJ_||J|- for t € ||-|0€c||JL. Then, A\zy.z(yWW) IF T0ec — 71 C ¢, in particular for
C=Uux.

Observe that for 7 € |70 # ux]||, kx € || 10 ux||L. Consider now
[IVx(ux 271 — z £ ux)||={t.-7|t€||(ux CTIAT Cux) — J_H‘”‘,ﬂ' € X}
as just shown, I I+ uy C T1; moreover, from the discussion above, (Azy.z(yWW )k, € |71 C ux||t
for any 7 € I, thus ¢t (A\zy.x(yWW))k, € HL||—H- This shows that
Ax.cchk.al(Azy.c(YWW)k I Vae(ux #2711 — z £ ux)

and implies that there exists a realizer for ux % 11 — Va(z £ ux).

Lastly, it suffices to show that I- Va(Vy(y £ x) «— = ~ 70). The formula can be reduce to Vz(Vy(y #
x) «— x € 70).

We first show the left-to-right implication. |[Vz(Vy(y ¢ =) — = € T0)|| = Upepalt - 7lt € |[Vyly £
c)||JL,7r € [le CT0|[}. Let tum € ||[Va(Vy(y ¢ ) — = C T0)|| for a fixed ¢ € MA. Then,

r=u.pe |J {ucpluelldg ot xelld# ).
deMA

5This is not the case from the non-extensional point of view: for X # I, N |= (ux # 10 Aux # T1).

6y Ccy:=Vz(z ¢ y— 2z £ x). It is easy to show that ZF¢ - Va,y(x Cc y — = C g)

Y = (Axdy.(v) (@) zy) Az )y (v) (x)zy, W = (Y)Azhy.(y)zz. It is easy to see that for any ¢ € MA, W IF ¢ C ¢, then
Az.zWW Ik c~ec.



Since tx p € L, Azy.x Ik Va(Vy(y ¢ ) — x C 710). We show the left-to-right implication. ||Vz(x C
0 — Vy(y £ )l = Ueeppait -7t € lc C 0|4, 7 € |IVyly # o)||}. Fix such a falsity value ¢ ..
te||Vyly g 710 — y # c)HJL. It is easy to see that ||d & TT0|| = 0 for any d € M+, hence any u € Q
realizes d ¢ 710, which implies tu € ||d # c||JL. Without loss of generality, suppose u = I. Then,
tI € [|Vy(y # ¢)||L, which proves Az.z I Va(z C 70 — Vy(y # )).

To conclude, we showed that for any X € II
Fux 271 — Va(z £ ux),

IFVz(x £ ux) +— ux ~ 70,
which implies that
IFux 2271 — ux ~ 0.

2. For any closed formula F € F, with parameters in M4

I-Fiff 3t e QVre||F||(txme L) iff IHecQ(tI-T0 ¢ uyp)) iff
iff HeQ(tIFVa(x ¢ uHFH)) iff I u||F|| ~ 70

3. Consider & = {X € Q(II) | N = ux ~ 70}

- & is upward closed for <. Let X € &,Y € Q(II),X < Y. By hypothesis, there exists u IF Vz(z ¢
ux),tlF X — Y, the latter equivalent to ¢ I- Va(z ¢ ux) — Va(z ¢ uy). Thus, (t)u lF Ve(z £ uy).

- & is closed for meets. Fix X|Y € &. Then, |[Vz(x £ uxay)|| = |70 £ uxay)|| = X/\Yﬂ By
hypothesis, there exists ¢,u € Q such that ¢ |- X, u |- Y, thus Az.atu IF Va(z £ uxay).

- & is mazimal. Consider X € 2 (II). We show that I (ux ~ 770 — 1) +— ux_, ~ 710, which is
equivalent to IF (Vz(z £ ux) — 1) «— Va(x ¢ ux— ). Observe that

IVa(z £ ux) — L[| = {t.7|t € ||Va(z £ ux)||*, 7 € I}
={t.x|te]T0 £ ux||t, x e}
={t.r|text rem
=170 # ux— ||
= [|Va(z £ ux—1)||

Thus, Az.xIl IF Vo(x £ ux) — L) «— Va(r £ ux_1). O
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