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1 Introduction
A semantics or interpretation is a function that associates with every term t of a rewriting system a mathemat-
ical object JtK. Semantics must be invariant with respect to the rewriting rules: if t reduces to t′, then JtK = Jt′K.
This invariance implies the inclusion of the syntactic equivalence relation on terms, which identifies the terms
that can be transformed into each other by applying rewriting rules, in the semantic equivalence relation that,
on the other hand, identifies the terms with the same interpretation.

Another interesting equivalence relation on the terms of a rewriting system is the observational equivalence.
Roughly speaking, two terms are observationally equivalent if they normalize to the same value in any context
of some type which is considered as ground, or “observable”. This notion originated in the field of programming
languages semantics: in order to compare two pieces of code, it is very natural to plug them into a program that
produces an observable value, such as a number and check whether or not they produce the same value. Every
reasonable notion of observational equivalence includes the semantic equivalence of every interpretation. We
say that a semantics is injective if the induced semantic equivalence coincides with syntactic equivalence, fully
abstract if it coincides with observational equivalence. In general, full abstraction fails when the interpretation
is not surjective. A classic example is Scott’s continuous model, which is not fully abstract for PCF because the
“parallel or” function is not PCF-definable, as shown in [7]. On the contrary, when the semantics is surjective,
we say that full completeness holds. This last property, which was originally studied in [1], is often exploited as
a sufficient condition for full abstraction, for instance in [5].

In the second half of the last century, with the discovery of Curry-Howard’s correspondence, the study of
these equivalence relations, historically at the heart of theoretical computer science, became relevant in proof
theory: a proof can be seen as a program, or a term of a rewriting system, whose execution corresponds to the
cut-elimination procedure. In Gentzen’s classical logic LK , however, the syntactic equivalence is trivial: it iden-
tifies all proofs of the same formula. In particular, every semantic equivalence is trivial.

Linear logic, introduced by Jean-Yves Girard in [4] in 1987, is a refinement of classical and intuitionistic
logic in which formulas are treated as resources: the structural rules of contraction and weakening are restricted
and the semantic equivalence induced by the models of linear logic is non-trivial.

In this context, we ask ourselves the question of finding a canonical object representing the proofs in the
same class of semantic equivalence. Formalization through proof-nets removes the redundant information of
sequent calculus concerning the order of application of the rules and allows us to define the cut-elimination pro-
cedure through local manipulations of graphs. It is therefore an appropriate formalism to study the dynamics of
normalisation and to prove fundamental properties of the system such as strong normalisation (see [4] and [6]).

In linear logic, the question of injectivity was first addressed by Tortora de Falco in [9], where he produced
counter-examples to the injectivity of multiset-based coherent semantics for multiplicative exponential linear
logic without units (MELL). On the other hand, the injectivity of relational semantics for the full multiplicative
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exponential fragment of linear logic was recently proven by de Carvalho in [3] by employing the powerful Taylor
expansion technique, that allows us to represent a proof-net as the infinite series of its linear approximations.

We resume the work on the injectivity of multiset-based coherent semantics which was started in [9]. It was
conjectured that coherent semantics is injective for connected MELL proof-nets and it was provided a sufficient
condition to reach this conclusion: the existence of an injective experiment for every connected proof-net which
only consists of axiom, tensor, dereliction and contraction nodes. This justifies our definition of proof-structure
(Definition 2.1). It was also proven, using the (C)-pairs technique, that this condition is met if one assumes that
every contraction node is terminal. In this work, we prove the injectivity of coherent semantics for connected
(?`)LLpol proof-nets (Section 5). This is done through the introduction of the notion of atomic pre-experiment
(Section 3) and a generalization of (C)-pairs (Section 4).

2 Proof-nets and experiments
In this section, we focus on a particular subsystem of cut-free MELL proof-nets. Formulas are generated by the
following grammar, where X,X⊥ denote dual atomic formulas:

A ::= X | X⊥ | A⊗A | ?A

Definition 2.1. A proof-structure is a non-empty labelled directed graphR such that its vertices, called nodes,
have exactly one label among ax , ⊗, ?, •, its arcs are labelled by formulas, every arc of R is called a premise of
its head and a conclusion of its tail and every node of R labelled by:

◦ ax is called an axiom, has no premises and exactly two conclusions, labelled by dual atomic formulas;

◦ ⊗ is called a tensor, has exactly one conclusion, labelled by a formula A⊗B, and exactly two premises,
one of which is called its left premise and is labelled by A, whereas the other is called its right premise and
is labelled by B;

◦ ? is called a why not and has exactly one conclusion, labelled by a formula of the shape ?A. Such a node
has all of its premises labelled by A and is called a weakening when it has no premises, a dereliction when
it has exactly one premise, a contraction otherwise;

◦ • is called a conclusion and possesses exactly one premise and no conclusions.

The type of an arc a of R is the formula labelling a. A switching of R is a function φ mapping every dereliction
or contraction node of R to one of its premises. The switching graph of R induced by φ is the proof-structure Rφ

obtained from R by replacing the head of a with a fresh conclusion, for each premise a of a contraction node n of
R such that φ(n) ̸= a. We say that R is a proof-net if the underlying undirected graph of every switching graph
ofR is acyclic, a connected proof-net if such graphs are also connected. Two nodesm,m′ ofR are φ-connected if
there exists a path from m to m′ in the underlying undirected graph of Rφ. If R is a proof-net, then such a path
is unique (if it exists) and is written θφm,m′ . We will assume that a proof-structure comes with a total order of its
conclusion nodes, called its interface.

Notation 2.1. Let R be a proof-structure and let a be an arc of R. We write na for the node of which the arc a
is a conclusion. IfR is a proof-net, φ is a switching ofR and a, a′ are arcs ofR, we write θφa,a′ for the path θφna,na′ .

We now turn our attention from syntax to semantics, by recalling the notion of coherence space.

Notation 2.2. Let A and B be sets. We write A×B for the cartesian product of A and B and Mfin(A) for the
set of finite multisets of elements of A. Also, for all x = (a, b) ∈ A×B, we define pr1(x) := a and pr2(x) := b.

Definition 2.2. A coherence space A is an ordered pair (|A|,¨A), where |A| is a set, called web and ¨A is a
binary reflexive and symmetric relation on the web called coherence. Strict coherence is written ˝A. A clique of
A is a subset C of |A| such that x ¨A y for every x, y ∈ C. The coherence space A⊥ is defined by |A⊥| := |A|
and¨A⊥ := |A|2 \ ˝A. We then define incoherence inA as˚A := ¨A⊥ and we writeˇA for strict incoherence.
Subscripts are omitted when they are clear from the context. Lastly, an anticlique of A is just a clique of A⊥.
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JJJ ·KKKRel |JJJ ·KKKCoh| x ¨ y

A⊗B JAKRel × JBKRel JAKCoh × JBKCoh pr1(x) ¨ pr1(y) and pr2(x) ¨ pr2(y)

?A Mfin(JAKRel) Mclfin(JAK⊥Coh) x = y or x ∪ y /∈ Mclfin(JAK⊥Coh)

Table 1: The relational and coherent interpretations of non-atomic formulas, where M ∈ Mclfin(JAK⊥Coh) if and only
if M ∈ Mfin(|JAKCoh|) and, for every u, v ∈ M , we have u ˚JAKCoh

v.

We now assume that we have an interpretation of atomic formulas by sets (resp. by coherence spaces), that
is a map J·KRel (resp. a map J·KCoh) that associates with each atomic formula X a set JXKRel (resp. a coherence
space JXKCoh) in such a way that JX⊥KRel = JXKRel (resp. JX⊥KCoh = JXK⊥Coh) for every atomic formula X.
The interpretation of non-atomic formulas is then defined by induction on their logical complexity, according to
Table 1. Now, in order to compute the semantics of a proof-structure, we need the notion of experiment.

Definition 2.3. LetR be a proof-structure. A relational (resp. coherent) experiment ofR is a function ewhich
associates with every arc of type A of R an element of its relational interpretation (resp. an element of the web
of its coherent interpretation) and such that:

• If α is a conclusion of an axiom node of R, then e(α) = e(α⊥);

• If a is the conclusion of a tensor node of R with left premise b and right premise c, then e(a) = (e(b), e(c));

• If a is the conclusion of a why not node of R with premises a1, . . . , ak, then e(a) = {e(a1), . . . , e(ak)}.

We say that e is injective if e(α1) ̸= e(α2) for all distinct arcs α1, α2 of R of the same atomic type. If (c1, . . . , ch)
is the sequence of the premises of the conclusion nodes in the interface order, then (e(c1), . . . , e(ch)) is called the
result of e. Finally, the relational (resp. coherent) semantics JRKRel (resp. JRKCoh) of R is the set of the results
of all relational (resp. coherent) experiments of R.

Remark 2.1. Both relational and coherent semantics identify a non-atomic axiom and the η-expansion of that
axiom, which is the canonical proof-net with the same conclusions as the non-atomic axiom and which only uses
atomic axioms. This justifies our choice of only allowing atomic axioms in Definition 2.1.
Remark 2.2. Let R be a proof-net, let (c1, . . . , ch) be the sequence of the premises of the conclusion nodes of R
in the interface order, let Ci be the type of ci for all i ∈ {1, . . . , h} and let `Γ := (C1 ` · · · )` Ch. Then JRKCoh

is a clique of J`ΓKCoh (see [4]). We also have JRKCoh = JRKRel ∩ |J`ΓKCoh| (see [8]). Hence, the injectivity of
coherent semantics for a fragment of proof-nets entails the injectivity of relational semantics for that fragment.
Remark 2.3. Every function mapping distinct axioms of R to distinct points of the relational interpretations of
their conclusions trivially induces an injective relational experiment of R. On the other hand, the existence of
an injective coherent experiment of R is non-trivial: whenever a is the conclusion of a contraction with premises
a1, . . . , ak of type A, we have e(a) ∈ |J?AKCoh|, or equivalently e(ai) ˚ e(aj) for all i, j ∈ {1, . . . , k}.

Example 2.1. Figure 1 provides an example of proof-net for which there is no injective coherent experiment.
Observe that this is not a connected proof-net. The connected component of this proof-net with the tensor and
weakening nodes is only necessary if a correspondence with a MELL sequent calculus proof is desired.

All the coherent experiments of the proof-net R in Figure 1 associate the same element with both axioms of
R. In fact, if x is associated with the upper axiom and y with the lower one, then we must have x ˚JXKCoh

y and
x ˚JX⊥KCoh

y, which entails x = y. As a result, no coherent experiment can distinguish R from the proof-net R′

obtained by crossing the two arcs labelled by X in R. In this case this is harmless, since R and R′ are indeed the
same proof-net. However, by slightly complicating this crucial example, one can obtain two distinct proof-nets
having the same coherent interpretation, as shown in [9]. This proves that coherent semantics is not injective
for MELL proof-nets and hints at the fact that the existence of an injective coherent experiment is intimately
related to the injectivity of coherent semantics. More precisely, the following sufficient condition for the “local”
injectivity of coherent semantics was provided in [9].
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?X ?X⊥

?Y ?Z

?Y⊗?Z

? ?

? ?

X X⊥

ax

X X⊥

ax

⊗

ax

⊢ X,X⊥
?w

⊢ X,X⊥, ?Y

ax

⊢ X,X⊥
?w

⊢ X,X⊥, ?Z
⊗

⊢ X,X,X⊥, X⊥, ?Y⊗?Z
?de × 4

⊢ ?X, ?X, ?X⊥, ?X⊥, ?Y⊗?Z
?co × 2

⊢ ?X, ?X⊥, ?Y⊗?Z

Figure 1: A proof-net for which there is no injective coherent experiment and a corresponding sequent calculus proof.

Lemma 2.1. Let R be a connected proof-net for which there exists an injective coherent experiment. Then, for
every connected proof-net R′ with the same conclusions as R and such that JRKCoh = JR′KCoh, we have R = R′.

In [9] it was also conjectured that, if we restrict ourselves to connected proof-nets, then coherent semantics
is injective. Such a result, which would establish a very interesting relationship between the syntactic property
of connectedness and the semantic property of injectivity, could be proven by using the following intermediate
result, which is a consequence of Lemma 2.1.

Corollary 2.1. If, for every connected proof-net R, an injective coherent experiment of R exists, then coherent
semantics is injective for the subsystem of connected proof-nets.

It is well known that, in the absence of weakenings, all sequent calculus proofs can be desequentialized into
connected proof-nets. Therefore, by Corollary 2.1 and by the results in [9] that allow us to restrict ourselves to
the fragment we have considered at the beginning of this section (namely, those concerning the linearization
and `-mutilation procedures), we obtain the following result, which further motivates our goal of proving the
existence of an injective coherent experiment for all connected proof-nets.

Corollary 2.2. If, for every connected proof-net R, an injective coherent experiment of R exists, then coherent
semantics is injective for MELL without weakenings.

3 Atomic pre-experiment
We have just seen in Section 2 that the injectivity of coherent semantics boils down to the existence of injective
coherent experiments. When trying to define such an experiment for a given proof-net, some choices are forced
from the very beginning, while others may be postponed. For instance, if two premises of a contraction node are
atomic arcs of type X, conclusions of axioms n and n′, then every injective coherent experiment must associate
with n and n′ two incoherent elements of |JXKCoh|. On the other hand, by considering for instance a proof-net
with no contraction nodes, it is clear that no particular choice is forced. Following this observation, we define an
abstraction and generalization of injective experiments which is partial: the notion of pre-experiment. The idea
is to forget the elements of the webs of the coherence spaces and retain the coherence and incoherence relations,
which will always be strict because our goal is to produce an injective experiment.

Notation 3.1. If α is a conclusion of an axiom n of a proof-structure R, we denote by α⊥ the other conclusion
of n. We also write PR for the set of unordered pairs {a, a′} such that a, a′ are two distinct arcs of R of the same
type and P at

R the set of those elements {α, α′} ∈ PR such that the type of α, α′ is atomic.

Definition 3.1. If R is a proof-structure, a pre-experiment of R is a partial function e : P at
R → {˝,ˇ}, where

˝ and ˇ are just two formal symbols, called coherence and incoherence, such that, for every {α, α′} ∈ P at
R , if

e({α, α′}) is defined, then e({α⊥, α′⊥}) is also defined and we have e({α, α′}) ̸= e({α⊥, α′⊥}). In addition, the
pre-experiment e uniquely extends to a partial function ē : PR → {˝,ˇ}, which is defined by induction on the
type A of the arcs a, a′ of a pair {a, a′} ∈ PR:
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◦ If A is an atomic type, then ē({a, a′}) = e({a, a′});

◦ If A = B ⊗ C for some types B and C, then a, a′ are conclusions of tensor nodes of R having left premises
b, b′ and right premises c, c′ respectively. We define:

ē({a, a′}) =

{˝ if ē({b, b′}) = ē({c, c′}) = ˝
ˇ if ē({b, b′}) = ˇ or ē({c, c′}) = ˇ

If neither of the conditions on the right holds, then the partial function ē is undefined on the pair {a, a′};

◦ If A = ?B for some type B, then a, a′ are conclusions of why not nodes of R with premises b1, . . . , bk and
b′1, . . . , b

′
k′ respectively, for some strictly positive integers k and k′. We define:

ē({a, a′}) =

{˝ if ∃ i ∈ {1, . . . , k}, i′ ∈ {1, . . . , k′} : ē({bi, b′i′}) = ˝
ˇ if ∀ i ∈ {1, . . . , k}, i′ ∈ {1, . . . , k′} : ē({bi, b′i′}) = ˇ

Again, if neither of the conditions on the right holds, the partial function ē is undefined on {a, a′}.
Notation 3.2. If e is a pre-experiment of a proof-structure R and {a, a′} ∈ PR, we can unambiguously denote
by e(a, a′) the element ē({a, a′}).

A key property that pre-experiments must satisfy in order to be extendable to a total injective experiment is
the requirement that any two premises of any contraction are not coherent.

Definition 3.2. A pre-experiment e of a proof-structure R is admissible if, for every two distinct premises a, a′
of the same contraction node of R, we do not have e(a, a′) = ˝, meaning that e(a, a′) is either ˇ or undefined.
We say that e is complete if e is admissible and defined on every pair of premises of a contraction node of R.

Remark 3.1. Every total extension of a complete pre-experiment of R is essentially an injective experiment.
The following definition now presents a particular pre-experiment of connected proof-nets.

Notation 3.3. We denote by |θ| the support of a path θ, that is its set of arcs and N (θ) its set of vertices.

Definition 3.3. The atomic pre-experiment of a connected proof-net R is defined by the condition:

eat(α, α
′) = ˝ ⇐⇒ ∀φ switching of R : α, α′ ∈ |θφα,α′ |

One easily proves that every pair of premises of an atomic contraction is incoherent.

Lemma 3.1. Let R be a connected proof-net and let {α, α′} ∈ P at
R such that α, α′ are two premises of the same

contraction of R. Then eat(α, α
′) = ˇ.

Remark 3.2. If every contraction of R is atomic, then eat is a complete pre-experiment of R.
To characterize the coherence assigned by the atomic pre-experiment to any pair of arcs of the same type,

possibly non-atomic, we introduce the notion of tree above an arc.

Definition 3.4. Let R be a proof-structure. If a is an arc of R, the distance of a from an axiom is the smallest
non-negative integer h for which there is a descent path1 a0 . . . ah of R such that a0 is a conclusion of an axiom
of R and ah = a. The tree above a, written Ta, is then defined by induction on the distance d of a from an axiom:

◦ If d = 0, then the tree above a is the arc a in which the label of the head is replaced by •;

◦ Otherwise, the arc a is the conclusion of a tensor or why not node n of R with premises b1, . . . , bℓ. The tree
above a is produced by first identifying for all indices i ∈ {1, . . . , ℓ} the head of bi in Tbi and the tail of a,
then replacing the labels of the tail and of the head of a with the label of n and • respectively.

Lemma 3.2. Let R be a connected proof-net. For every pair {a, a′} ∈ PR we have:

eat(a, a
′) = ˝ ⇐⇒ no contraction of R occurs in Ta nor in Ta′ and ∀φ switching of R : a, a′ ∈ |θφa,a′ |

An immediate consequence is the admissibility of the atomic pre-experiment.

Corollary 3.1. Let R be a connected proof-net. Then eat is admissible.
1A descent path is a sequence of arcs a0 . . . ah such that the head of ai−1 is the tail of ai for all i ∈ {1, . . . , h}.
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4 Generalization of (C)-pairs
The notion of (C)-pair is designed for producing an injective experiment such that every two conclusions of the
same type of the proof-net are incoherent. It relies crucially on the fact that we deal with connected proof-nets:
the incoherence of a pair of conclusions (a, a′) is guaranteed by atomic arcs above a and a′ which are involved in
the paths θφa,a′ , where φ is any switching of the proof-net. Given that any two conclusions of the same type can
be turned into premises of a terminal contraction and conversely, this technique, originally introduced in [9],
can be used to prove the existence of an injective experiment in presence of terminal contraction nodes.

While in [9] the result was established under the hypothesis that every contraction node is terminal, here we
generalize the notion of (C)-pair to proof-nets in which atomic contraction nodes may occur. From now on, we
writeR for a connected proof-net in which only axioms, tensors, derelictions and atomic contractions occur. We
assume, for the sake of simplicity, that every conclusion of an axiom of R is a premise of a why not node. This is
done without loss of generality, by adding dereliction nodes under atomic arcs where why not nodes are absent.
The old notion of (C)-pair is well defined for the switching graphs of R, so we begin by recalling it. We use here
a different terminology to avoid any confusion with the new notion of (C)-pair we will introduce later.

Definition 4.1. Let φ be a switching ofR and let {a, a′} ∈ PRφ , {α0, α
′
0} ∈ P at

Rφ such that a, a′ are conclusions
of Rφ and such that α0, α

′
0 are arcs of Ta and of Ta′ respectively. We say that (α0, α

′
0) is a (φ)-pair for (a, a′) if:

nα0
∈ N (θφa,a′) or nα′

0
∈ N (θφa,a′)

Remark 4.1. For every switching φ of R, there always exists a (φ)-pair for (a, a′) and there exist at most two.

Definition 4.2. Let {a, a′} ∈ PR, {α, α′} ∈ P at
R such that a, a′ are conclusions of R and such that α, α′ are the

conclusions of two atomic why not nodes, the first in Ta and the second in Ta′ . We say that (α, α′) is a (C)-pair
for (a, a′) if there exists a switching φ of R such that (φ(nα), φ(nα′)) is a (φ)-pair for (a, a′).

Remark 4.2. There always exists a (C)-pair for (a, a′).

The following result expresses the fact that the incoherence of a (C)-pair guarantees the incoherence of the
corresponding conclusions of the proof-net.

Lemma 4.1. If e is a pre-experiment ofR, if (α, α′) is a (C)-pair for (a, a′) and e(α, α′) = ˇ, then e(a, a′) = ˇ.

The atomic pre-experiment always assigns incoherence on (C)-pairs that are unique over the corresponding
conclusions of the proof-net.

Lemma 4.2. If (α, α′) is the unique (C)-pair for (a, a′), then eat(α, α
′) = ˇ and eat(a, a

′) = ˇ.

5 Injectivity for connected (?`)LLpol proof-nets
We now consider the fragment (?`)LLpol of linear logic which is defined by the following grammar:

N,M ::= X | ?X | ?P `N | N ` ?P P,Q ::= X⊥ | !X⊥ | !N ⊗ P | P ⊗ !N

In this section, we see that coherent semantics is injective for connected (?`)LLpol proof-nets. By definition of
injective experiment we can assume, without loss of generality, that X and X⊥ are the only atomic types. Now
we apply the linearization procedure given in [9] and, as a result, we obtain the L((?`)LLpol) proof-net L(R), in
which the of course and auxiliary door nodes of R disappear, as well as the borders of the boxes. The fragment
L((?`)LLpol)) is defined by the following grammar:

N,M ::= X | ?X | ?P `N | N ` ?P P,Q ::= X⊥ | N ⊗ P | P ⊗N

We now apply the `-mutilation procedure, defined in [9], in a very particular way. For each ` node of L(R), we
replace its conclusion with its premise of type N , whereas its premise of type ?P becomes the premise of a fresh

6



conclusion node. Then, whenever a1, . . . , ak are the premises of the why not nodes having as conclusions all and
only the premises of the fresh conclusions nodes of type ?P for some P , we replace these why not nodes with a
unique terminal why not node that has a1, . . . , ak as premises. The resulting proof-net is denoted by L(R)` and
is a L((?`)LLpol)

` proof-net, where the fragment L((?`)LLpol)
` is expressed by the grammar:

N,M ::= X | ?X A,B := ?P P,Q ::= X⊥ | N ⊗ P | P ⊗N

Observe that every contraction n of L(R)` is either atomic or terminal. We can assume that every atomic arc of
L(R)` is a premise of a why not node, like in Section 4 and we can remove every terminal contraction of L(R)`.
The resulting proof-net, denoted by L(R)∗̀ , is a L((?`)LLpol)∗̀ proof-net, where L((?`)LLpol)∗̀ is defined by:

N,M ::= ?X P,Q ::= ?X⊥ | ?X ⊗ P | P ⊗ ?X

Remark 5.1. Every L((?`)LLpol)∗̀ formula different from ?X has precisely one occurrence of subformula ?X⊥,
that is, up to associativity, it has the shape:

?X ⊗ · · · ⊗ ?X ⊗ ?X⊥ ⊗ ?X ⊗ · · · ⊗ ?X

Consequently, for every {a, a′} ∈ PR such that a, a′ are conclusions of L(R)∗̀ , either there is a unique (C)-pair
for (a, a′), or there exists a (C)-pair (α, α′) for (a, a′) such that α and α′ are arcs of type ?X.

Each step of the procedure we just described preserves the connectedness of the switching graphs, so L(R)∗̀
is a connected proof-net and we can then use the (C)-pairs technique provided in Section 4. The following result
is now a consequence of Lemma 2.1 and other sufficient conditions given in [9].

Lemma 5.1. If, for every connected (?`)LLpol proof-net R, there is a complete pre-experiment of L(R)∗̀ such
that every two conclusions of the same type are incoherent, then coherent semantics is injective for connected
(?`)LLpol proof-nets.

We finally prove the sufficient condition expressed by the previous result.

Lemma 5.2. If R is a connected (?`)LLpol proof-net, then there exists a complete pre-experiment e of L(R)∗̀
such that any two conclusions of the same type are incoherent.

Proof. Let R′ := L(R)∗̀ . By Remark 3.2, we know that eat is a complete pre-experiment of R′. Now consider a
pair {a, a′} ∈ PR′ such that a, a′ are conclusions of R′ and such that eat(a, a′) is undefined. By Lemma 4.2 and
Remark 5.1 combined, there exists a (C)-pair (α, α′) for (a, a′) such that α and α′ are arcs of type ?X. We then
define e as any (complete) pre-experiment of R′ extending eat in such a way that, whenever {a, a′} ∈ PR′ is a
pair of conclusions of R′ such that eat(a, a′) is undefined, we have e(α, α′) = ˇ, where (α, α′) is a (C)-pair for
(a, a′) such that α and α′ are arcs of type ?X. Notice that e is well defined because we are adding incoherence
only on pairs of arcs of type X. We can therefore conclude that e is a complete pre-experiment of R′ and that
e(a, a′) = ˇ for every {a, a′} ∈ PR′ with a, a′ conclusions of R′ by Lemma 4.1.

Corollary 5.1. Coherent semantics is injective for connected (?`)LLpol proof-nets.

Lastly, given that connected (?`)LLpol proof-nets embed the simply typed λI-calculus, which is the simply
typed λ-calculus without weakenings (see [2]), we also have a proof of the following result.

Corollary 5.2. Coherent semantics is injective for the simply typed λI-calculus.
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