
Submitted to:
TLLA24

©
This work is licensed under the
Creative Commons Attribution License.

On Expressing Stateful Computation in Linear Logic

Luís Caires
Instituto Superior Técnico (U Lisboa) / INESC-ID

luis.caires@tecnico.ulisboa.pt

In this work, we discuss a notion of linear shared state types, which allow an expressive model of mu-
table shared state to be parsimoniously represented within linear logic framework. The computational in-
terpretation of linear logic as a session-typed π-calculus [7, 8, 26] has motivated many developments, and
may well be accepted as a fairly canonical typed model for stateful concurrent computation with linear
resources, pretty much like the lambda calculus is considered a canonical typed model for functional se-
quential computation with pure values. The interpretation of linear logic as session types [7, 8] promoted
the process interpretation of linear logic proofs [1, 2], where proofs correspond to processes interacting
via linear session channels, tensor corresponds to session output, co-tensor to session input, and com-
putation progresses by sequences of elementary name-passing interactions, instead of more monolithic
beta-reduction style conversion and term substitution as in λ -calculi. In particular, in classical linear
logic (CLL) interpretations [8, 26], linear logic negation denotes session type duality. By bringing in
additives and exponentials one may then represent full (linear and shared) session types [13, 14, 11].
This basic framework may be further extended with second-order quantifiers [6, 26], useful to express
polymorphism and abstract data types and allowing, in particular, (linear) System-F to be fully-abstractly
encoded [25], with inductive and co-inductive types [24, 25], and several other mechanisms (e.g., [23]).

Other works [3, 18] demonstrated how notions of shared mutable state may also be accommodated on
top of this basic scheme, even if not always remaining faithful to the pure proposition-as-types paradigm.
In [20, 21], we have introduced program constructs inspired in the quantitative exponentials of DiLL [10],
which allows full stateful shared state computation to be expressed in a system that satisfies the distin-
guising features of proposition-as-types: programs as proofs, proposition as types, computation as proof
simplification. The resulting language CLASS [20, 21], actually a conservative extension of classical
linear logic with affine types and state modalities, can express realistic shared state programs which are
literally proofs of their own correctness, in the sense that well-typing ensures protocol fidelity, deadlock
absence, termination, confluence and memory safety. The key idea from [20] is to explore the meaning
of DiLL co-contraction to express sharing of linear objects, namely, of mutable memory cells:

⊢ ∆′,c : U•A ⊢ ∆,c : U•A

⊢ ∆′,∆,c : U•A

P ⊢ ∆′,c : U•A Q ⊢ ∆,c : U•A

share c {P || Q} ⊢ ∆′,∆,c : U•A

On the left, we can find the standard rule expressing co-contraction [10], in this case for the modality U•A,
which represents shared usage of mutable memory. On the right, we show the corresponding typing rule
for the program term share c {P || Q} denoting the composition of two independent processes sharing a
mutable memory proof object c containing a (linear) value of type A. By iterating use of share c {P || Q}
we may express computations where any number of concurrent threads may share a common mutable
linear resource. Mutable linear memory cells storing values of type A are represented by program terms
of type S•, the dual type of U•A, and [21] introduced basic primitives to read from and write to such linear
memory cells, which behave pretty much like Haskell MVars [16]. The typing rules for these primitives
monolithically integrate multiplicative and monadic principles, and the resulting logic satisfies all the

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2

[Tdrop]
drop c ⊢ c : UX .A

P ⊢ ∆′,c : UX .A Q ⊢ ∆,c : {UX .A/X}B
[Tsh]

share c {P || Q} ⊢ ∆′,∆,c : {UX .A/X}B

P ⊢ ∆ Q ⊢ ∆
[Tsum]

P + Q ⊢ ∆

share c {P || Q} ≡ share c {Q || P}
share c {drop c || Q} ≡ Q

share c {α;P || Q} ≡ α;share c {P || Q} (α ̸= use c)
share c {use c;Q || use c;P} ≡ use c;share c {Q || use c;P}+use c;share c {use c;Q || P}

Figure 1: Selected typing rules and conversions for shared types.

type shared Off {
offer of {

|#turnOn : On
}

} and On {
offer of {
|#turnOff : Off

}
}

proc shared switch (l : Off){
case l of {
|#turnOn : switchOn(l)

}
} and switchOn (l : On){
case l of {
|#turnOff : switch(l)

}
}

proc main (){
cut {

switch(l) |l : Off |
share l {
use l;#turnOn l;#turnOff l;drop l
||
use l;#turnOn l;#turnOff l;drop l
}

}
}

Figure 2: Example: A shared toggle switch.

expected meta-theoretic properties (cut-elimination, confluence, termination). In this work, we propose
a reconstruction of these shared state primitives in [21] from more elementary and general operations,
while preserving all the fundamental meta-theoretical properties of the resulting type system.

To that end we introduce the shared state type SX .A and its dual, the shared usage type UX .A. These
are essentially adjusted forms of co-recursive and recursive types, that satisfy the key quantitative co-
contraction and co-weakening principles of DiLL, and, remarkably, allow us to model the well-known
mechanism of serialisation up to a invariant [12, 5], by interpreting unfold segments of shared usage
types as critical sections. More concretely, in our setting concurrent clients compete to acquire unique
ownership of shared resource via a principal cut reduction between a “use" operation (use c;P) and
a shared co-recursive object; use operator combines “unfold" with the shared access control of CLASS.
This mechanism is closely related to manifest sharing [3], where invariant-based sharing of linear objects
within a linear logic interpretation of session types was already achieved, however, in our parsimonious
approach based on DiLL principles, computation rules precisely coincide with proof conversions, and
confluence and deadlock absence are a natural consequence of cut-elimination, faithfully to the spirit of
propositions-as-types. The sharing trees imposed by the “unfold sensitive" co-contraction rule (Figure 1
[Tsh]) disciplines reduction in a way such that each client accessing the shared resource always execute
the body of the respective co-recursive definition in mutual exclusion, before allowing other client to take
over. Any usage of a shared object may be released using drop (co-weakening, Fig 1 [Tdrop]), as in [21].
The conversion rules expands concurrent unfolds in sums (Fig 1 [Tsum]) of alternative interleavings, thus

3

ensuring confluence of cut elimination (cf. DiLL [10]), and allowing the system to support equational
reasoning about program observational equivalence [19].

We briefly exemplify in Fig. 2 our construction with the definition of a shareable toggle switch (lin-
ear) object, where, for readability, we use CLASS syntax. We define the (co)-recursive types Off and On,
where Off is shared, and the switch process that continuously offers actions turnOn and turnOff . These
actions statefully change the type of the switch from Off to On and from On to Off respectively. The
main process composes (using cut) a switch object at l with two client threads, which use l concurrently,
considering the body of the shared type as a mutual exclusion section with Off as invariant type.

In our talk, we motivate and present our basic language and type system, which consists in classical
linear logic with inductive / conductive types, affine types, the novel formulation of shared types here, and
overview its meta-theoretic properties, which imply strong guarantees of practical interest: programs do
not deadlock, always terminate and do not leak resources. We will also demonstrate the expressiveness
of the language expressiveness in realistic concurrent session-based shared-state programs written in an
extension of the CLASS implementation [22], and briefly compare with recent work on type systems
for concurrent programming with resources based on linear logic, which are becoming more and more
relevant in computing practice, as witnessed by the widespread adoption of programming languages such
as Rust, for general systems programming, Move, for blockchain smart contracts, Linear Haskell, and
many others [27, 15, 4, 17, 9].

References

[1] S. Abramsky (1993): Computational Interpretations of Linear Logic. Theor. Comput. Sci. 111(1), pp. 3–57.

[2] Samson Abramsky (1994): Proofs as Processes. Theor. Comput. Sci. 135(1), pp. 5–9.

[3] Stephanie Balzer & Frank Pfenning (2017): Manifest Sharing with Session Types. Proc. ACM Program.
Lang. 1(ICFP).

[4] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones & Arnaud Spiwack
(2018): Linear Haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Program.
Lang. 2(POPL), pp. 5:1–5:29.

[5] Stephen Brookes & Peter W. O’Hearn (2016): Concurrent separation logic. ACM SIGLOG News 3(3), pp.
47–65.

[6] Luís Caires, Jorge A. Pérez, Frank Pfenning & Bernardo Toninho (2013): Behavioral Polymorphism and
Parametricity in Session-Based Communication. In: ESOP’13, LNCS, Springer-Verlag, p. 330–349.

[7] Luís Caires & Frank Pfenning (2010): Session Types as Intuitionistic Linear Propositions. In Paul Gastin
& François Laroussinie, editors: CONCUR 2010 - Concurrency Theory, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 222–236.

[8] Luís Caires, Frank Pfenning & Bernardo Toninho (2016): Linear logic propositions as session types. Math-
ematical Structures in Computer Science 26(3), p. 367–423.

[9] Ankush Das & Frank Pfenning (2022): Rast: A Language for Resource-Aware Session Types. Log. Methods
Comput. Sci. 18(1).

[10] Thomas Ehrhard (2018): An introduction to differential linear logic: proof-nets, models and antiderivatives.
Mathematical Structures in Computer Science 28(7), pp. 995–1060.

[11] S. Gay & M. Hole (2005): Subtyping for Session Types in the Pi Calculus. Acta Inf. 42(2-3), pp. 191–225.

[12] Charles A. R. Hoare (1972): Towards a theory of parallel programming. In: The origin of concurrent
programming, Springer, pp. 231–244.

4

[13] Kohei Honda (1993): Types for dyadic interaction. In Eike Best, editor: CONCUR’93, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 509–523.

[14] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language primitives and type discipline for
structured communication-based programming. In Chris Hankin, editor: Programming Languages and Sys-
tems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 122–138.

[15] Jules Jacobs & Stephanie Balzer (2023): Higher-Order Leak and Deadlock Free Locks. Proc. ACM Program.
Lang. 7(POPL), pp. 1027–1057.

[16] Simon Peyton Jones, Andrew Gordon & Sigbjorn Finne (1996): Concurrent Haskell. In: POPL, 96, Citeseer,
pp. 295–308.

[17] Nicholas D. Matsakis & Felix S. Klock (2014): The Rust Language. Ada Lett. 34(3), p. 103–104.
[18] Zesen Qian, G. A. Kavvos & Lars Birkedal (2021): Client-Server Sessions in Linear Logic. Proc. ACM

Program. Lang. 5(ICFP).
[19] Pedro Rocha (2022): CLASS: A Logical Foundation for Typeful Programming with Shared State. Ph.D.

thesis, NOVA School of Science and Technology.
[20] Pedro Rocha & Luís Caires (2021): Propositions-as-types and shared state. Proc. ACM Program. Lang.

5(ICFP), pp. 1–30.
[21] Pedro Rocha & Luís Caires (2023): Safe Session-Based Concurrency with Shared Linear State. In Thomas

Wies, editor: ESOP 2023, Lecture Notes in Computer Science 13990, Springer, pp. 421–450.
[22] Pedro Rocha & Luís Caires (2023): Safe Session-based Concurrency with Shared Linear State (Artifact).

doi:https://doi.org/10.5281/zenodo.7506064.
[23] Bernardo Toninho, Luis Caires & Frank Pfenning (2013): Higher-Order Processes, Functions, and Sessions:

A Monadic Integration. In Matthias Felleisen & Philippa Gardner, editors: Programming Languages and
Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 350–369.

[24] Bernardo Toninho, Luís Caires & Frank Pfenning (2014): Corecursion and non-divergence in session-typed
processes. In: International Symposium on Trustworthy Global Computing, Springer, pp. 159–175.

[25] Bernardo Toninho & Nobuko Yoshida (2021): On Polymorphic Sessions and Functions: A Tale of Two (Fully
Abstract) Encodings. ACM Trans. Program. Lang. Syst. 43(2).

[26] Philip Wadler (2014): Propositions as sessions. Journal of Functional Programming 24(2-3), pp. 384–418.
[27] Jingyi Emma Zhong, Kevin Cheang & Shaz Qadeer et. al. (2020): The Move Prover. In Shuvendu K. Lahiri

& Chao Wang, editors: CAV 2020, 12224, Springer, pp. 137–150.

https://doi.org/https://doi.org/10.5281/zenodo.7506064

