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Abstract
Orbit-finite sets are a generalisation of finite sets, and as such support many operations allowed for
finite sets, such as pairing, quotienting, or taking subsets. However, they do not support function
spaces, i.e. if X and Y are orbit-finite sets, then the space of finitely supported functions from X to
Y is not orbit-finite. We propose a solution to this problem inspired by linear logic.
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Orbit-finite sets. The class of orbit-finite sets contains all finite sets and some infinite sets,
but still shares some properties with the class of finite sets. The idea, which dates back
to Fraenkel–Mostowski models of set theory, is to begin with an infinite set A of atoms or
urelements. We think of the atoms as being names, such as Eve or John, and atoms can only
be compared with respect to equality. Intuitively speaking, an orbit-finite set is a set that
can be constructed using the atoms, such as A2 or A∗, subject to the constraint that there
are finitely many elements up to renaming atoms. For example, A2 is orbit-finite because it
has two elements up to renaming atoms, namely (John, John) and (John, Eve), while A∗ is
not orbit-finite, because the length of a sequence is invariant under renaming atoms, and
there are infinitely many possible lengths. For a survey on orbit-finite sets, see [3].

The notion of orbit-finiteness can be seen as an attempt to find an appropriate notion
of finiteness for the nominal sets of Gabbay and Pitts [14] (which have also been used to
handle syntax with binders). This attempt emerged from the study of computational models
such as monoids [4] and automata [5] over infinite alphabets. Let us illustrate orbit-finiteness
using an automaton example.

▶ Example 1 (An orbit-finite automaton). Let L ⊆ A∗ be the language of words in which the
letter from the first position does not appear again. This language contains John · Mark ·
Mark · Eve, because John does not reappear, but it does not contain John · Mark · John.
To recognize this language, we can use a deterministic automaton, which uses its state to
remember the first letter. In this automaton, the input alphabet is Σ = A and the state
space is Q = 1 + 1 + A. In this state space, there are two special states, namely the initial
state and a rejecting error state, and furthermore there is one state for each atom a ∈ A,
which represents a situation where the first letter was a but it has not been seen again yet.
This state space is infinite; but it is orbit-finite, since each of the three components in Q

represents a single orbit.◀
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Orbit-finite sets have many advantages, which ensure that they are a good setting for
automata theory, and discrete mathematics in general. For example, an orbit-finite set can
be represented in a finite way [3], which ensures that it becomes meaningful to talk about
algorithms that input orbit-finite sets, such as an emptiness check for an automaton. Also,
orbit-finite sets are closed under taking disjoint unions and products, which ensures that
natural automata constructions, such as the union of two nondeterministic automata or the
product of two deterministic automata can be performed.

However, orbit-finite sets do not have all the closure properties of finite sets. Notably
missing is the powerset operation, and more generally taking function spaces. For example,
the powerset of A is not orbit-finite, since already the finite subsets give infinitely many
orbits (two finite subsets of different sizes will be in different orbits). The lack of powersets
means that one cannot do the subset construction from automata theory, and in particular
deterministic and nondeterministic automata are not equivalent. This non-equivalence was
known from the early days of automata for infinite alphabets [10], and in fact, some decision
problems, such as equivalence, are decidable for deterministic automata but undecidable for
nondeterministic automata [11]. Another construction that fails is converting a deterministic
automaton into a monoid [4, p. 221]; this is because function spaces on orbit-finite sets are
no longer orbit-finite, as explained in the following example.

▶ Example 2 (Failure of the monoid construction). Let us show that the automaton from
Example 1 cannot be converted into a monoid. The standard construction would be to
define the monoid as the subset M ⊆ Q → Q of all state transformations, namely the subset
generated by individual input letters. Unfortunately, this construction does not work. This
is because in order for two input words to give the same state transformation, they need
to have the same set of letters that appear in them. In particular, the corresponding set of
set transformations is not orbit-finite, for the same reason as why the finite powerset is not
orbit-finite. Not only does the standard construction not work, but also this language is not
recognized by any orbit-finite monoid.◀

The single-use restriction. An attempt to address this problem was provided in [17, 6],
based on single-use functions. The idea, which originates in linear types and linear logic, is
to restrict the functions so that they use each argument at most once. For example, consider
the following two functions that input atoms and output Booleans:

a ∈ A 7→

{
true if a = John
false otherwise

a ∈ A 7→

{
true if a = John or a =Eve
false otherwise

Intuitively, the first function is single-use, since it compares the input atom to John only,
while the second function is not single-use, since it requires two comparisons, with John and
Eve. Here is another example, which shows that the problems with the monoid construction
from Example 2 could be blamed on a violation of the single-use condition.

▶ Example 3. Consider the transition function of the automaton in Example 1, which inputs
a state in 1 + 1 + A together with an input letter from A, and returns a new state. This
function is not single use. Indeed, if the state is in A, then the transition function compares
it for equality with the input letter; but if the comparison returns true, another copy of the
old state must be kept as the new state for future comparisons. ◀

If one restricts attention to functions that are single-use, much of the usual robustness of
automata theory is recovered, with deterministic automata being equivalent to monoids, and
both being equivalent to two-way deterministic automata [6].
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Despite the success of the single-use restriction in solving automata problems, one would
ideally prefer a more principled approach, in which instead of defining single-use automata,
we would define a more general object, namely single-use sets and functions. Then the
definitions of automata and monoids, as well theorems speaking about them, should arise
automatically as a result of suitable closure properties of the sets and functions.

This approach was pursued in [17], in which a category of orbit-finite sets with single-use
functions was proposed. In this corresponding category, one can represent the set of all
single-use functions between two orbit-finite sets X and Y as a new set, call it X ⇒ Y ,
which is also orbit-finite. However, as we will see later in this paper, this proposal is not
entirely satisfactory, since it fails to account for standard operations that one would like to
perform on function spaces, most importantly partial application (currying). In the language
of category theory, the proposal from [17] failed to be a monoidal closed category.

Contributions. The main contribution of this work is to propose a notion of single-use sets
and functions, which extends the proposal from [17], but which is rich enough to be closed
under taking function spaces. More formally, we propose a category of single-use functions
between linear types that denote orbit-finite sets with additional metadata, and we prove
that:

▶ Theorem 4. Let V and W be objects (i.e. linear types). There exists an object, denoted by
V ⇒ W , and a morphism (i.e. a single-use function) eval : (V ⇒ W ) ⊗ V → W with the
following property. For every morphism f : X ⊗ V → W there is a (not necessarily unique)
morphism h : X → (V ⇒ W ) such that the following diagram commutes:

X ⊗ V (V ⇒ W ) ⊗ V

W

h⊗id

f
eval

In other words, our symmetric monoidal category is weakly closed. To guarantee uniqueness
in the universal property, and thus get an actual symmetric monoidal closed category, one
can perform a quotient by partial equivalence relations.

The main idea is to extend the type system from [17] with the additive conjunction ‘&’ of
linear logic. Thanks to the distinction between X ⊗ Y (in [17] denoted as X × Y ) and X&Y ,
the function space can be built so that the appropriate operations on functions, namely
application and currying, can be implemented in a single-use way. Note that this function
space is a derived notion, not a type constructor in our syntax; indeed, our linear types are
all “first-order”, so that they denote orbit-finite sets in a straightforward way:

[[1]] = 1 [[A]] = A [[X + Y ]] = [[X]] + [[Y ]] [[X ⊗ Y ]] = [[X&Y ]] = [[X]] × [[Y ]].

Our construction of weak function spaces uses game semantics to represent single-use functions
as first-order data. More precisely, it is closely based on the “simple games” exposed in
e.g. [1, 9]. However, as far as we know, it is an original idea to have an infinite but orbit-finite
base type A, and to observe that all constructions in game semantics are consistent with
orbit-finiteness. We believe that the resulting category deserves further study, and that it is
an interesting and non-trivial example of a category representing “finite” objects.

Related work: categories and λ-calculus. There have been several works using category
theory to generalize classical operations on automata, such as the coalgebraic “generalized
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powerset construction” [16]. The closest to the philosophy that this paper might be the
work of Colcombet and Petrişan [7]: it introduces a setting where automata over different
categories may be studied and compared (see e.g. [2] for applications). Within this setting,
Pradic and the second author have investigated some properties of automata over symmetric
monoidal closed categories [12, Sections 1.2.3 and 4.7–4.8].

The latter emerged as part of their research on “implicit automata” [13, 12, 15], which is
about relating the expressive power of automata and typed λ-calculi. In [12, Chapter 4], a
monoidal closed category of single-use assignments on string-valued registers is built and used
to relate a register-based string transducer model to a λ-calculus with linear types. Indeed,
symmetric monoidal closed categories are famous for providing denotational semantics for
the linear λ-calculus. Similarly, our results here could serve to characterize the languages of
words with atoms studied by the first and third author in [6] via some typed λ-calculus.

Conversely, our Theorem 4 might also be provable by representing single-use functions as
λ-terms (or programs in some richly structured syntactic formalism) instead of strategies
over games. Indeed, it is a classical fact that a simple type is inhabited by finitely many
linear λ-terms up to β-conversion (when there are no primitive constants), and variations on
this fact have been used in the literature to relate automata and λ-calculus [13, 8].
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