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1 INTRODUCTION
The last decade has seen rapid development in probabilistic semantics, a good portion of which fall

into two categories: those based on monads and those based on linear operators. While there has

been plenty of work on understanding what are the natural syntactic and semantic abstractions

for programming with monads, its linear operator counterpart is still not fully developed, due to a

mismatch between the natural affordances of linear logic and linear operators.

One of these mismatches was first observed during the full-abstraction study of the probabilistic

coherence spaces model (PCoh) of linear logic[5], where it was noted that the familiar coKleisli

semantics of the 𝜆-calculus is unsuitable for practical probabilistic programming, since its call-by-

name nature makes it impossible to reuse sampled values.

This was elegantly addressed in subsequent work on probabilistic variants of call-by-push-value

(CBPV), where by making use of coalgebras for the exponential modality, one can recover reusability

of samples at certain types [6]. This construction, however, could not be easily generalized to

continuous datatypes, which has led to a careful semantic study of measurability paths in cones [4]

which resulted in soundly adding a sample reuse operation, as long as the output type is R. Recent
work has finally found a model where spaces of measures can be equipped with a !-coalgebra

structure, making it possible to define a syntax and semantics for a calculus with continuous

datatypes and reusability of samples [3].

However, there are still a couple of shortcomings in this approach:

• The construction of such model is extremely involved and there does not seem to have

underlying semantic structures that can be repurposed to other models. This can be prob-

lematic when studying variants of models, where such a construction would have to be

done from scratch. Since there are many different aspects to probabilistic programming,

such as its interactions with differentiable algorithms and cryptography, we should strive

for developing semantic techniques that generalize beyond a single model.

• It departs from the deep connections between vector spaces and probability theory. Since

one of the main use cases of denotational semantics is reasoning about programs, it is

important to keep it as close as possible to well-established areas of mathematics, so that

theorems from a large body of work can be readily used when reasoning about programs.

Making the syntax rely so much on the exponential widens the gap between the semantics

and the mathematical literature. The exponential should be mainly used as a syntactic

artifact for unlocking the full expressive power of the 𝜆-calculus when programming with

linear operators.

As a way of mitigating these issues, another approach was recently suggested [1], where it is

proposed a two-level calculus for programming with kernels and linear operators. Unfortunately,

that calculus suffers from expressivity issues.

Contributions. In this abstract we extend the calculus of [1] using ideas from enriched category

theory and provide a uniform way of lifting any model of the original calculus to this enriched

setting. By doing this, we also provide a systematic semantic justification to the sampling construct

of [4].
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𝑀, 𝑁 B 𝑥 | 𝑛 | let 𝑥 = 𝑀 in 𝑁 | 𝑓 (𝑀) | (𝑀, 𝑁 ) | 𝜋1𝑀 | 𝜋2𝑁

𝑡,𝑢 B 𝑥 | 𝑛 | 𝜆𝑥 . 𝑡 | 𝑡 𝑢 | 𝑡 ⊗ 𝑢 | let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 | sample 𝑡1, . . . , 𝑡𝑛 as 𝑥1, . . . , 𝑥𝑛 in𝑀

Fig. 1. Term and Type Grammars of 𝜆𝐿𝐿
𝑀𝐾

2 𝜆𝐿𝐿
𝑀𝐾

: A TWO-LEVEL SYSTEM FOR KERNELS AND LINEAR OPERATORS
We begin by presenting the two-level calculus 𝜆𝐿𝐿

𝑀𝐾
[1]. It is based on categorical models of linear

logic and on recent developments on synthetic probability theory [7]. The syntax is presented in

Figure 1, where the first term grammar is a language for defining Markov kernels or, more abstractly,

Kleili arrows, while the second grammar is a linear 𝜆-calculus for defining linear operators. Its

novelty is the introduction of the modality M that transports “Kleisli types” into linear types. The

two-level structure gives rise to two typing judgement relations Γ⊢𝐿𝐿𝑡 : 𝜏 and Δ⊢𝑀𝐾𝑀 : 𝜏 . Most of

the typing rules are standard, the novelty is the rule for manipulating the M modality:

{Γ𝑖⊢𝐿𝐿𝑡𝑖 : M𝜏𝑖 }𝑖∈{1,...,𝑛} 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛⊢𝑀𝐾𝑀 : 𝜏

Γ1, . . . , Γ𝑛⊢𝐿𝐿sample {𝑡𝑖 } as {𝑥𝑖 } in𝑀 : M𝜏

Its operational interpretation is that given 𝑛 programs {𝑡𝑖 }𝑖∈{1,...,𝑛} of typeM𝜏 , which should be

thought of as programs that can be sampled from, we first sample from them, bind the results to

variables {𝑥𝑖 }𝑖∈{1,...,𝑛} which are then used in the program𝑀 . Each typing judgement is interpreted

in its own category. The linear language has its types interpreted in a symmetric monoidal closed

category, contexts are interpreted as the tensor over the semantics of its elements and a well-typed

program 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛⊢𝐿𝐿𝑡 : 𝜏 is interpreted as a morphism J𝜏1K ⊗ · · · ⊗ J𝜏𝑛K → J𝜏K, and the

kernel language is interpreted in a similar manner, but using a CD category instead, which we now

define.

Definition 2.1. A CD category is a symmetric monoidal category C equipped with transformations

𝐴 → 𝐼 and 𝐴 → 𝐴 ⊗ 𝐴 making certain diagrams commute.

The sampling modality will be interpreted as a lax monoidal functor, which we now define.

Definition 2.2. A laxmonoidal functor is a functor betweenmonoidal categories C andD equipped

with a pair of natural transformations 𝜖 : 𝐼D → 𝐹𝐼C and 𝜇𝐴,𝐵 : 𝐹𝐴 ⊗D 𝐹𝐵 → 𝐹 (𝐴 ⊗C 𝐵) satisfying
certain coherence conditions.

One of the consequences of the coherence conditions is that the 𝜇 natural transformation can

be extended uniquely to its 𝑛-ary variant 𝜇𝑛
𝐴𝑖 ,...,𝐴𝑛

: 𝐹 (𝐴1) ⊗ · · · ⊗ 𝐹 (𝐴𝑛) → 𝐹 (𝐴1 ⊗ · · · ⊗ 𝐴𝑛). It is
now possible to define what is a 𝜆𝐿𝐿

𝑀𝐾
model.

Definition 2.3. A 𝜆𝐿𝐿
𝑀𝐾

model is a triple (C,L,M) where C is a CD category, L is symmetric

monoidal closed and M : C → L is a lax monoidal functor.

The semantics is mostly standard: the linear 𝜆-calculus is interpreted using the symmetric

monoidal closed structure of L and the CD category interprets the first-order expression language.

Sample is the notable construct of the calculus and its semantics is defined using the lax monoidal
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structure of M1
:

{Γ𝑖
𝑡𝑖−→ M𝜏𝑖 }𝑖∈{1,...,𝑛} 𝜏1 × · · · × 𝜏𝑛

𝑁−→ 𝜏

Γ1 ⊗ · · · ⊗ Γ𝑛
𝑡1⊗···⊗𝑡𝑛−−−−−−−→ M𝜏1 ⊗ · · · ⊗ M𝜏𝑛

𝜇𝑛

−−→ M(𝜏1 × · · · × 𝜏𝑛)
M𝑁−−−→ M𝜏

We now show how the M modality can used to copy and discard samples.

Example 2.4. The program sample 𝑡 as 𝑥 in (𝑥 + 𝑥) samples from a distribution 𝑡 , binds the value

to 𝑥 and adds the value to itself.

Example 2.5. The program sample 𝑡 as 𝑥 in 5 samples from 𝑡 , binds the value to 𝑥 and never uses

it, outputting the constant 5.

This calculus admits many familiar models, we highlight two of them.

Example 2.6. Let CStoch be the category of countable sets and transitions matrices and M :

CStoch → PCoh be the functor that maps countable sets to the probabilistic coherence space of sub-

probability distributions over them and it is the identity onmorphisms. The triple (CStoch, PCoh,M)
is a 𝜆𝐿𝐿

𝑀𝐾
model.

Example 2.7. Let sStoch be the category of measurable spaces and subMarkov kernels, RoBan
is the category of regular ordered Banach spaces [2] andM is the functor that maps measurable

spaces to the Banach space of signed measures and subMarkov kernels are mapped to their Kleisli

extension. The triple (Stoch,RoBan,M) is a 𝜆𝐿𝐿
𝑀𝐾

model.

Note, however, that the functor M above is not full. For example, it is possible to use the

decomposition M𝑋 = M𝑑𝑋 ⊕ M𝑐𝑋 , where M𝑑𝑋 are the discrete measures over 𝑋 , M𝑐𝑋 are

the continuous measures over 𝑋 and ⊕ is the direct sum operation. Under this decomposition it

is possible to define a linear operation that maps discrete measures to 0 and it the identity on

continuous measures. This function is not in the image of the functor M.

3 AN ENRICHED TWO-LEVEL CALCULUS
Though 𝜆𝐿𝐿

𝑀𝐾
enables reusability and discardability of samples without requiring the exponential

modality, it still suffers from some limitations as it does not handle parametric distributions well. For

example, suppose that the linear language has been used for defining closed parametric distributions

𝑡1, 𝑡2 of typeMR⊸MR. Naturally, it should be possible to call this function from within the kernel

language with the same parameter, e.g. let𝑥 = uniform in 𝑡1 (𝑥)+𝑡2 (𝑥). However, in its original form,

the only interaction between languages occurs at their boundaries through the Sample construct,

making the above program impossible to write in 𝜆𝐿𝐿
𝑀𝐾

.

Upon closer inspection, this limitation is a consequence of, in general, there being more linear

operators than kernels, meaning that in theory it should not possible to call a linear function from

the kernel language because it could not be in the image of M.

At a syntactic level, there should be a way of extending the calculus in a way that makes it possible

to “reify” programs of type M𝜏1⊸M𝜏2 back into open MK programs of type 𝑥 : 𝜏1⊢𝑀𝐾𝑡 : 𝜏2. We

propose an extension of 𝜆𝐿𝐿
𝑀𝐾

using ideas from enriched category theory in order to accommodate

such reification primitives. We start with a basic lemma from enriched category theory.

Lemma 3.1. If 𝐹 : C → L is a full and faithful functor and L a symmetric monoidal closed category
then C is an L-category.

1
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Fig. 2. Lifted model

(N ↓ 𝑖𝑑) SetC
𝑜𝑝

L SetC
𝑜𝑝

𝑖𝑑

N

Fig. 3. Glued model along the nerve functor

In our case, since L is assumed to be monoidal closed, it is enriched over itself and C is also

enriched over L by using the hom-object C(𝐴, 𝐵) = M𝐴 ⊸ M𝐵. This motivates changing a bit

the interpretation of programs. A program Δ⊢𝑀𝐾𝑀 : 𝜏 should be interpreted as an L morphism

𝐼 → (M JΔK ⊸ M𝜏), i.e. a global element of M JΔK ⊸ M J𝜏K. Since now the entire semantics of

𝜆𝐿𝐿
𝑀𝐾

lives inside ofL, it is possible tomake kernel programs depend on linear contexts: Γ;Δ⊢𝑀𝐾𝑀 : 𝜏

and its semantics is an L-morphism JΓK → (M JΔK ⊸ M J𝜏K). Furthermore, we can add the

following rule:

Γ1;Δ⊢𝑀𝐾𝑀 : 𝜏 Γ2⊢𝐿𝐿𝑡 : M𝜏⊸M𝜏 ′

Γ1, Γ2;Δ⊢𝑀𝐾𝑡 (𝑀) : 𝜏 ′

Note that this rule is very similar to the one defined in [4] where the authors introduce an eager

sampling rule that has as restriction that the output must be of type R.

Definition 3.2. An enriched 𝜆𝐿𝐿
𝑀𝐾

model is an 𝜆𝐿𝐿
𝑀𝐾

model (C,L,M) such that M is full and

faithful.

Under this categorical structure the new rule is interpreted as

Γ1
𝑀−→ (MΔ ⊸ M𝜏) Γ2

𝑡−→ (M𝜏 ⊸ M𝜏 ′)

Γ1 ⊗ Γ2
𝑡◦𝑀−−−→ (MΔ ⊸ M𝜏 ′)

Example 3.3 (Parametric Box-Muller Transform). Let ·⊢𝐿𝐿uniform : MR⊸MR be the program

that, given a real number 𝑟 , samples from the uniform distribution over the interval [0, 𝑟 ] and
define

𝜆 𝜇. sample 𝜇 as 𝑟 in

let 𝑥=uniform(𝑟 ) in
let 𝑦=uniform(𝑟 ) in(√︂

−2 ln 𝑦

𝑟
sin(2𝜋𝑥),

√︂
−2 ln 𝑦

𝑟
cos(2𝜋𝑥)

)
4 CANONICAL LIFTING
Though the enriched version of 𝜆𝐿𝐿

𝑀𝐾
mitigates the expressivity issues of its non-enriched variant,

at first it suffers from the same limitations as the cones models [4], where it would be necessary a

possibly complicated semantic argument to justify the soundness of the extension. Fortunately,

there is a straightforward way of lifting 𝜆𝐿𝐿
𝑀𝐾

models to an enriched model by using a categorical

gluing argument.

Theorem 4.1. Every 𝜆𝐿𝐿
𝑀𝐾

model (C,L,M) such that L is locally small lifts to a model (C, L̃, M̃)
such that M̃ is full, there is a fibred functor𝑈 : L̃ → L andM = 𝑈 ◦ M̃, see Figure 2.
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Proof. The proof follows by gluing along the nerve functor, see Figure 3

N : L → SetC
𝑜𝑝

N(𝑉 ) = L(M−,𝑉 )
It is possible to prove thatN is lax monoidal with respect to the the Day monoidal closed structure

of presheaf categories. By using the Hyland and Schalk gluing construction [8], it is possible to

show that the comma category (N ↓ 𝑖𝑑) is symmetric monoidal closed with the forgetful functor

being a fibration and preserving the symmetric monoidal close on the nose. □

In particular, there is a lifting of the RoBan model such that the functor is full. More concretely,

the glued model looks quite similar to the measurability requirements of [4], where the objects

of L̃ are pairs (𝐴,𝑋 ), where 𝑋 is an object of L and 𝑋 is a plot set of maps M𝐵 → 𝐴, for every

𝐵 ∈ C.

5 FUTUREWORK
Though we have shown that 𝜆𝐿𝐿

𝑀𝐾
models lift to enriched ones, it is still important to understand

what are other structures that will lift to the glued model. In particular, if L has an exponential,

will it also exist in the glued model? By using a double-gluing orthogonality construction, does

∗-autonomy also lift? We are also interested in relating the expressivity of the calculus proposed

in [4] with the enriched version of 𝜆𝐿𝐿
𝑀𝐾

. While at the semantic level they both can potentially

represent every Markov kernel, it is unclear if there is a syntatic translation of the former into the

latter.
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