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Linear logic (LL) [9] is a refinement of both classical and intuitionistic logic allow-
ing control over computational resources. This is obtained by having a strong discipline
on the use of resources in proofs thanks to the use of the exponential modality (denoted
by !), which marks the distinction between those assumptions that can be used linearly,
that is, exactly once, and those ones that are reusable at will. In the Curry-Howard in-
terpretation, the exponential modality introduces non-linearity in functional programs:
a proof of the linear implication !A⊸ B is interpreted as a program returning an output
of type B using an arbitrary (but finite) number of times an input of type A.

Thanks to its computational features, linear logic has established itself as an impor-
tant tool for Implicit Computational Complexity (ICC), the branch of computational
complexity studying languages or calculi able to capture the inherent principles of
bounded computation without depending on specific machine models or explicit re-
source bounds. In particular, several variants of second-order linear logic called light
logics have been proposed to capture complexity classes: examples are soft linear logic
(SLL) [11] or light linear logic (LLL) [10] for FP (the class of polynomial time com-
putable functions), and elementary linear logic (ELL) [5] for FELEMENTARY (the
class of elementary time computable functions).

Continuing this tradition, in [14] Mazza and Terui introduced parsimonious logic,
nuPL∀ℓ, a lambda calculus with polymorphic types inspired by linear logic that char-
acterises the complexity class P/poly (the class of problems decidable in non-uniform
polynomial time)1In this system, the exponential modality satisfies the so-called Mil-
ner’s law !A ≃ A ⊗ !A. According to the Curry-Howard interpretation, this law allows
us to interpret a formula !A as the type of streams over data of type A. Therefore,
the linear implications A ⊗ !A ⊸ !A (co-absorption) and !A ⊸ A ⊗ !A (absorp-
tion) can be respectively interpreted as the push and the pop operations on streams.
In nuPL∀ℓ, non-uniformity is introduced by the typing rule !I, which takes a finite set
of proofs D1, . . . ,Dn of A and a (possibly non-recursive) function f : N → {1, . . . , n}
as premises, and constructs a proof of !A modelling the streamD f (0) :: D f (1) :: D f (2) ::
. . .. Specifically, the typing rule !I allows the encoding of advices for Turing machines,
the crucial step to show completeness for P/poly. On the other hand, polynomial step
cut-elimination is guaranteed thanks to “parsimony”, which invalids the implications
!A⊸ !!A (digging) and !A⊸ !A ⊗ !A (contraction).

1Formally, P/poly can be defined as the class of problems decidable by families of circuits with polyno-
mial size or, equivalently, as the class of problems decidable in polynomial time by a Turing machine with
polynomial advice, that is, an extra input whose size depends on the length of the input, but not on the input
itself.
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Contribution In this talk we present an ongoing work exploring a different approach
to P/poly based on Cyclic Implicit Complexity, the study of ICC in the context of
non-wellfounded proof theory [3, 4]. Specifically, the typing rule !I parametrised by a
(possibly non-recursive) function f : N → {1, . . . , n} and defining the stream D f (0) ::
D f (1) :: D f (2) :: . . . will be represented by a non-wellfounded proof of the following
form:
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essentially by “unpacking” !I into an infinite proof iterating a more primitive rule called
conditional promotion (c!p).

The resulting system of non-wellfounded proofs for parsimonious logic, called
nuPLL∞2 , introduces fallacious reasoning. Logical consistency is then recovered by
adapting a standard global condition, called progressiveness criterion, which relies on
threads of exponential formulas occurring in the infinite branches of a derivation tree.
In particular, progressiveness forces a computational interpretation of the modalities !
and ? (i.e. the dual of !), in terms of greatest and least fixed points respectively. Note
that definitions of exponentials based on fixed points have been proposed in [2] by
defining !A B να.(1 & A & (α⊗ α)) and ?A B µα.(⊥⊕ A⊕ (α` α)), where ν and µ are
the greatest and the least fixed point operator respectively. However, as shown in [6],
such an encoding does not give rise to a Seely category, which is essential to model
linear logic.

We discuss an alternative technique to prove cut-elimination for nuPLL∞2 relying on
infinitary rewriting techniques (see, e.g. [7]), but avoiding the use of the multicut rule,
as opposed to [1]. Then, we show that nuPLL∞2 captures the class FP/poly (the class
of functions computable in non-uniform polynomial time). To this end, we establish
a polynomial “modulus of continuity” for cut elimination (see e.g. [13]), from which
we infer soundness for FP/poly. This is one of the major technical results of the pa-
per. Completeness is established via an encoding of polynomial time Turing machines
with (polynomial) advice by adapting standard methods from [12, 8] to the setting of
non-uniform computation. Along the way, we show that cPLL∞2 , i.e. the restriction of
nuPLL∞2 to proofs having a regular tree structure (known as circular proofs), captures
precisely FP.

We conclude by introducing a relational semantics for nuPLL∞2 and by analysing
its interplay with cut elimination.
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