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Abstract

Linear logic has provided new perspectives on proof-theory, denotational semantics and the study of programming languages.
One of its main successes are proof-nets, canonical representations of proofs that lie at the intersection between logic and
graph theory. In the case of the minimalist proof-system of multiplicative linear logic without units (MLL), these two aspects
are completely fused: proof-nets for this system are graphs satisfying a correctness criterion that can be fully expressed in
the language of graphs.
For more expressive logical systems (containing logical constants, quantifiers and exponential modalities), this is not completely
the case. The purely graphical approach of proof-nets deprives them of any sequential structure that is crucial to represent
the order in which arguments are presented, which is necessary for these extensions. Rebuilding this order of presentation —
sequentializing the graph — is thus a requirement for a graph to be logical. Presentations and study of the artifacts ensuring
that sequentialization can be done, such as boxes or jumps, are an integral part of researches on linear logic.
Jumps, extensively studied by Faggian and di Giamberardino, can express intermediate degrees of sequentialization between
a sequent calculus proof and a fully desequentialized proof-net. We propose to analyze the logical strength of jumps by
internalizing them in an extention of MLL where axioms on a specific formula, the jumping formula, introduce constrains on
the possible sequentializations. The jumping formula needs to be treated non-linearly, which we do either axiomatically, or
by embedding it in a very controlled fragment of multiplicative-exponential linear logic, uncovering the exponential logic of
sequentialization.
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1 Introduction

Proof theory is concerned with proof systems, specifying how proofs are structured, and in turn, which
formulæ are provable. Different proof systems have different properties, such as soundness (the fact that
all provable formulæ are also valid — for a given semantics of formulæ), completeness (the fact that all
valid formulæ are also provable — again, for a given semantics of formulæ), canonicity (two proofs differ
if and only if they have different interpretations — for a given semantics of proofs), ...

Broadly speaking, Linear logic [9] has two main kinds of proof systems:

Sequent calculus Proofs are trees whose nodes are labelled by inference rules transforming sequents
of formulæ. This representation – even though it is both historically decisive in the development of
proof-theory since the work of Gentzen by emphasizing the role of the cut inference as well as for
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reductive logics (aka. proof-construction) by suggesting a natural notion of proof-goal – contains lot of
unnecessary information (such as the specific order of application of some unrelated rules): it is far from
being canonical. The loss of confluence in sequent calculus witnesses this loss of canonicity.

Proof-nets are graphs whose nodes relate formulæ to one another. A proof-net contains much less
information than a sequent calculus proof with respect to the order of application of inference rules.
This allows them to be canonical, for some fragments of linear logic at least. In particular, they are
canonical for multiplicative linear logic without units (simply referred to as MLL in the following). As
a by-product, confluence is recovered in MLL proof-nets.

Apart from the contrast on canonicity issue, a major difference between sequent proofs and proof-nets
follows from the tree vs. graph structure and concerns logical correctness of the proof-object: sequent
proofs being inductively defined proof objects, their logical correctness is naturally defined in a local way:
soundness of the conclusion follows from the soundness of each premise and one only considers derivation
trees that is built applying inferences in a correct way. On the other hand, proof-nets being graphs, there
is no such thing as a root, in general, and logical correctness therefore becomes a global property of the
graph. It would be ad hoc to restrict solely to those graphs which are logically correct and one therefore
consider two levels of proof objects: proof structures, which are graphs with some typing constraints on
the edges and vertices; and proof-nets, which are logically correct proof structures.

A way to introduce contexts (other than boxes [9]) are jumps, a recurrent feature in the literature on
proof nets [10].

They are purely geometrical (i.e. untyped) edges adding extra connection between links of a proof
structure. Jumps were first introduced by Girard in [10] to add more sequentiality in proof nets with
quantifiers, typically preventing sequentialization that would not match the variable-witness dependencies
between ∀ and ∃ quantifier. Jumps are also used as lighter feature than boxes to handle the sequentiality
induced by sequent rules outside of MLL, typically the unit rules [2,11,13], additive rules [11,12] and
exponentials for λ-nets [1].

Fig. 1: A graphical jump

A⊥ B⊥ A B

C⊥ C D⊥ D

ax ax

ax ax
⊗
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O
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⊗

(A`B)⊗ C⊥

⊗

C ⊗D⊥

On another line of work, Faggian and her collaborators de-
velopped a setting in which jumps are taken seriously as edges
in a more general graph than just the mere syntactic tree of
a formula. First in the context of L-nets [3,4,8], a parallel
syntax for Ludics designs, then in the context of J-proof nets
for HS+ (a polarized and hypersequentialized sequent calcu-
lus) and MLL [6,7], their setting allows in particular to see se-
quent calculus proofs as proof-nets saturated with sequential
edges, embedding both proof-nets and sequent calculus proofs
in a same universe of partially sequentialized proof-structures,
each of them living at one extremity on a de·sequentialization
spectrum.

The figure above depicts a proof net with a jump (the red dashed arrow) from (the formula occurrence)
(A ` B) ⊗ C⊥ to (the formula occurrence) C. As a consequence, when sequentializing such a net, the
⊗ rule introducing (A ` B) ⊗ C⊥ will always be placed above the ⊗ rule using C to introduce C ⊗D⊥.
Jumps are thus a way to constrain the set of sequentializations that are derivable from a proof net. As
additional features in the usual proof net theory, usual correctness criteria on proof nets must be adapted
to the setting. In this paper, we show how those graphical edges (and their dynamics) can in fact be
internalised directly in linear logic, that is encoded inside (a variant of) the logic, in particular retrieving
their correctness criteria through the usual ones.

Contributions and organization of the paper.
In this paper, we show that graphical jumps as presented above can be internalised in the logic under

study at the only cost of adding a special atom J that enjoys, as well as its dual, the property of a monoid
and behaves as an exponential under cut elimination.

To keep this paper light and readable, we will focus our internalisation of jumps to MLL. In Section 4,
we will recast the basic definitions on MLL sequent proofs and proof-nets. In Section 3 we start introducing
our encoding of jumps as axioms in a cut-free setting. In particular, we will define MLLJ a logic which is
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basically MLL plus a special atom J that enjoys operadic logical rules. We will prove that our encoding
is correct and that our jumps correspond exactly to the the one described in [7]. In Section ?? we will
discuss the encoding of jumps in the dynamic setting of proofs with cuts and cut elimination, enriching
MLLJ with the appropriate exponential dynamics for J. This will make explicit the dynamics of jumps
sketched in [7] and treated more exhaustively in [5]. Finally, we will conclude in Section 5 by showing that
the jump atom J can be implemented effectively in the exponential fragment of MELL + Mix.

2 MLL proofs: sequent-calculus, proof-nets and sequentialization

Sequent calculus proofs as (constrained) proof structures
A formula F is a formula occurrence in π if it is the active conclusion of a rule in π. For F a formula

occurrence in π, we define its life-time as sub-branch from its creation to its use.
For two rule occurrences r and r′ in a proof π, we say that r is above (or occurs before) r′ if r and

r′ belong to the same branch in the proof, and r′ appears before r starting from the root. If r produces
a formula F this is equivalent to say that there exists F ′ an active formula of r′ such that F is created
before F ′ is used. We write F ≺ F ′.

Every sequent proof π can be desequentialized into a proof structure Rπ, defined inductively. For a
proof structure R, we note seq(R) its set of sequentializations, that is, the set of sequent proofs π such that
Rπ = R. Desequentialization is preserved by cut elimination and, conversely, if π ∈ seq(R) and R → R′,
then there exists π′ ∈ seq(R′) such that π →+ π′. Note, however, that in general proofs in seq(R′) do not
correspond to the reduct of some proof in seq(R).

If π is a sequentialization of R then there is a one-to-one correspondence between the rules in π and
the links in R (this correspondence is defined during the inductive procedure of desequentialization). By
extension every edge in R can be associated with a formula occurrence in π throughout its life-time. In the
following we will often make use of this correspondence, keeping the conversion from proof to net implicit.

Given a proof structure R, its set of sequentializations may be empty, in that case we say that R is
incorrect. On the contrary, if seq(R) is non empty, we say that R is correct or that it is a proof net,
meaning that it actually corresponds to a canonical representation of proofs.

A proof net can have several sequentializations, for example:

Example 2.1 Consider the (correct) proof-structure R:

A⊥ B⊥ A B

C⊥ C D⊥ D

ax ax

ax ax
⊗

A⊥ ⊗B⊥

O

A`B

⊗

(A`B)⊗ C⊥

⊗

C ⊗D⊥

It has two different sequentializations:

⊢ A⊥, A ⊢ B⊥, B
⊗

⊢ A⊥ ⊗B⊥, A,B `
⊢ A⊥ ⊗B⊥, A`B ⊢ C⊥, C

⊗
⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥, C ⊢ D⊥, D

⊗
⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥, C ⊗D⊥, D

⊢ A⊥, A ⊢ B⊥, B
⊗

⊢ A⊥ ⊗B⊥, A,B `
⊢ A⊥ ⊗B⊥, A`B

⊢ C⊥, C ⊢ D⊥, D
⊗

⊢ C⊥, C ⊗D⊥, D
⊗

⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥, C ⊗D⊥, D

On the first one, A is above D, not in the second.

Graphical jumps as depicted in Figure 1 are used to restrict the possible set of sequentializations of a
net: if there is a jump from F to F ′ in R, then we expect F to appear above F ′ in any sequentialization
of R. In the above example, only the left sequentialization would be possible.
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3 Jumps as axioms

The graphical jump presented above can be encoded in cut-free MLL proof structures using the axiom link
of fresh atomic formulas J to create a synchronisation point.

Definition 3.1 Let F and F ′ be two formulæ. A jump from F to F ′ is the gadget:

F J J⊥ F ′

ax

⊗

F ⊗ J

O

J⊥ ` F ′

Let R be a proof-structure, and F , F ′ be two formula occurrences in R.
We define JF→F ′(R) the proof structure with a jump from F to F ′ by grafting the jump from F to F ′

where F and F ′ are, and making all the types coherent.

Let us illustrate the previous definition. Consider the (correct) proof-structure R in Example 2.1, we
can add a jump from F = (A`B)⊗ C⊥ to C, resulting in the proof-structure JF→C(R):

A⊥ B⊥ A B

C⊥ C D⊥ D

J J⊥

ax ax

ax ax

ax

⊗

A⊥ ⊗B⊥

O

A`B

⊗

(A`B)⊗ C⊥ ⊗

J⊥ ⊗ C

⊗

(J⊥ ⊗ C)⊗D⊥

O

((A`B)⊗ C⊥)` J

This proof-structure is much more rigid than R. It also has only two sequentializations:

⊢ A⊥, A ⊢ B⊥, B
⊗

⊢ A⊥ ⊗B⊥, A,B `
⊢ A⊥ ⊗B⊥, A`B ⊢ C⊥, C

⊗
⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥, C ⊢ J⊥,J

⊗
⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥,J,J⊥ ⊗ C `
⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥ ` J,J⊥ ⊗ C ⊢ D⊥, D

⊗
⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥ ` J, (J⊥ ⊗ C)⊗D⊥, D

and the one where the ` rule shown in green is commuted below the ⊗ rule. They differ in a much lighter
way than the two sequentializations of R: indeed, forgetting every occurrence of J in both of these two
sequent calculus proofs yields only one of the two sequentializations of the original proof-net. The presence
of the jump from F = (A`B)⊗C⊥ to C forces F to be above C in every sequentialization of JF→C(R).
Let us turn this example into a general theorem.

Theorem 3.2 (correctness) Let R be a proof-structure, and F and F ′ two formula occurrences, then
JF→F ′(R) is correct if and only if there exists a sequentialization of R such that F is above F ′.

4 General case

This encoding of jumps have to be complexified in order to allow for multiple jumps and cuts. To this end,
we define MLLJ which can be seen as an extension of MLL with a special atom J enjoying contractions as
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A B

J
...

... J

• J⊥ J⊥ J⊥ J

J J⊥ •

•

J

⊗
...

⊗
...

⊗

J(A)⊗ J(B)

⊗

J(A)⊗ J(B)⊗ J

J(1)

J(1)

J(1)

J⊥(3)

J⊥

O

J⊥ ` (J(A)⊗ J(B)⊗ J)

J(1)

⊗

(J⊥ ` (J(A)⊗ J(B)⊗ J))⊗ J J⊥(1)

J⊥

O

((J⊥ ` (J(A)⊗ J(B)⊗ J))⊗ J)` J⊥

⊗

(((J⊥ ` (J(A)⊗ J(B))⊗ J)⊗ J)` J⊥)⊗ J

J(0)

Fig. 2. Gadget for a positive binary connective A⊗B

depicted in Figure 3. We then replace each connective and formula by a more complex gadget. Consider
for instance a positive connective A⊗B, we replace it by the gadget in Figure 2

• As before, Orange links define the out- and in-synchronisation points of an edge F in R.

• Blue and Green links are propagation points, they will allow the incoming jumps of the premises of a
link to inherit from the outgoing jumps of the link during cut elimination (or the outgoing jumps of the
conclusion of an axiom link to be transfered to the positive atom after reduction). In particular, Blue
links are connected to the out-synchronisation point of the premises of the link being replaced.

• Finally, Red links are absorption points, they will erase, the incoming jump of the premises of a cut
after its elimination.

Ax(n)
⊢ J, J⊥, . . . , J⊥︸ ︷︷ ︸

n
ctr(n)

⊢ Γ, J⊥, . . . , J⊥︸ ︷︷ ︸
n

Fig. 3: Rules for J

Given two formula occurrences F and F ′ in R, a jump from F to F ′ is
now encoded in RJ by connecting the out-synchronisation point of F to the
in-synchronisation point of F ′, and, if F ′ is the premise of a link in R, to the
Blue propagation point of that link.

Let L be a set of pairs of formula occurrences in R, we note JL(R) the
MLLJ-proof structure corresponding to J(R) with all the jumps described in
L.

5 Implementation

In this section, in order to finish our logical internalization of jumps, we
eventually show how jumps, as defined in Figure 3, can be implemented in the exponential fragment of
MELL + Mix.

As mentioned in Section 4, we need J and J⊥ to be able to contract. This can be achieved using the
contraction rule of the ?-exponential in MELL, so our encoding of J and J⊥ must involve this exponential
modality. J only needs the ability to contract at the level of axioms while J⊥ is free to contract everywhere,
furthermore, J and J⊥ must be dual from each other, as such, we set:

J = !?AJ J⊥ = ?!A⊥
J
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?AJ

?

!

!?AJ

!

(a) J(0)

AJ A⊥
J . . . AJ A⊥

J

ax

!

!A⊥
J

!?

?AJ

?

ax

!

!A⊥
J

!?

?AJ

?

?

?AJ

!

!?AJ

! ?

?!A⊥
J

? ?

?!A⊥
J

?

(b) J(n), n > 0

?!A⊥
J . . . ?!A⊥

J

?

?!A⊥
J

(c) J⊥(n), n > 0

Fig. 4. Encoding of the combinators on J and J⊥

where AJ is a special atom that does not appear in regular MLL formulae.
In Figure 4 we show how the static properties of jumps (that are J(n ≥ 0) and J⊥(m > 0)) can be

derived via this encoding. The dynamics properties of jumps can then be derived from the usual dynamics
of exponential in MELL.
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