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1 INTRODUCTION
The language of mathematics is constrained by the finite means we have to express it. Simultane-

ously, we are interested in inherently infinite structures. Thus, the language we use to describe

mathematics must thread a needle between the finite and the infinite. Modern mathematical foun-

dations achieves this with great success; we indulge ourselves in the hypothesis that a new variable

may always be introduced and distinguished from the finite set which are currently in use. This is

instilled in the assumption that an infinite set (usually taken to be countable) of variables exists,

yet any individual mathematical proof contains only a finite subset of these variables. In this way,

the variables used inside mathematical proof are merely potentially infinite.
The untyped _-calculus reflects this “potential infinitude”: in the context of a redex (_𝑥 .𝑀)𝑁

there are an arbitrary yet finite number of free occurrences of 𝑥 inside𝑀 , and thus an arbitrary yet

finite number of substitutions performed in the single-step 𝛽-reduction (_𝑥.𝑀)𝑁 −→𝛽 𝑀 [𝑥 := 𝑁 ].
This also holds for the simply typed _-calculus, however the untyped _-calculus admits another

dimension of potential infinitude in that there are terms whose reductions grow arbitrarily large,
although each term itself in the reduction sequence is finite. For instance we have, where 𝜔 denotes

_𝑥.𝑥𝑥𝑥 :

𝜔𝜔 −→𝛽 𝜔𝜔𝜔 −→𝛽 𝜔𝜔𝜔𝜔 −→𝛽 . . .

The current paper concerns itself withmodels of the untyped _-calculus. To illustrate how amodel

can capture potential infinitude, consider a set 𝐴 and let P(𝐴) denote the powerset of 𝐴. Observe
that any subset𝑋 ∈ P(𝐴) can be written as the filtered colimit of finite sets colim𝑋 ′⊆

fin
𝑋 𝑋 ′

. Suppose

𝐵 is another set and we have a function 𝑓 : 𝐴 −→ 𝐵. Then 𝑓 induces a map 𝑓∗ : P(𝐴) → P(𝐵) which
preserves (amongst other things) filtered colimits and wide pullbacks, so that we may evaluate 𝑓∗ at
a given subset 𝑋 as the union of 𝑓∗ applied to the finite subsets of 𝑋 . We can think of the collection

{𝑓∗ (𝑋 ′) | 𝑋 ′ ⊆fin 𝑋 } as a collection of finite approximations to 𝑓∗. Moreover, if 𝑋 ′, 𝑋 ′′ ⊆ 𝐴 are both

finite such that 𝑥 ∈ 𝑋 ′, 𝑋 ′′
then 𝑥 ∈ 𝑋 ′ ∩ 𝑋 ′′

and so

𝑓∗ (𝑋 ′ ∩ 𝑋 ′′) = 𝑓∗ (𝑋 ′) ∩ 𝑓∗ (𝑋 ′′) (1)

as 𝑓∗ preserves pullbacks. This implies that there exists a minimal, finite subset 𝑋 determining the

behaviour of 𝑓 on some 𝑥 ∈ 𝐴.

The phenomenon just observed lifts to a more general setting. We replace finite sets with finite

functors (presheaves 𝐹 such that

⊔
𝑎∈𝐴 𝐹 (𝑎) is finite) along with a canonical choice of representative

for each finite set 𝐹 (𝑎). For the set with 𝑛 elements we take the choice {0, . . . , 𝑛 − 1} and the set

with 0 elements is the is the unique such, ie, the empty set ∅.
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Let Int(𝐴) be the subcategory of Set
𝐴
on the integral functors (finite functors for which 𝐹 (𝑎) is

one of the above canonical choices, for each 𝑎 ∈ 𝐴).

Lemma 1. Let 𝐴 be a set viewed as a category. Any functor 𝐹 ∈ Set
𝐴 is the colimit of functors in

Int(𝐴).

Moreover, normal functors (those preserving filtered colimits and wide pullbacks) F : Set
𝐴 −→

Set can be represented using finite data.

Motivated by a search for a satisfying model of the untyped _-calculus, Girard succeeded in

defining a model where each _-term 𝑡 is interpreted with respect to a finite context {𝑥1, . . . , 𝑥𝑛} as
a normal functor

Set
𝐴 × . . . × Set

𝐴 −→ Set
𝐴

where there are 𝑛 copies of Set
𝐴
in the domain.

The key technical tool used in Girard’s proof is the Normal Form Theorem, which equates

normal functors to analytic functors, functors admitting a presentation reminiscent of formal power

series. However, faced with the complexity of the details of this model, one must wonder: is the
categorical framework of presheaves absolutely necessary? Or in other words, is there a simpler

structure underlying this categorical framework which is still sufficient to model the _-calculus?

2 A SIMPLE COMBINATORIAL MODEL
Our starting point was to replace integral functors 𝐹 ∈ Int(𝐴) with finite multisets of elements of

𝐴; we denote the set of such things by I(𝐴). This embeds inside the set of functions 𝐴 −→ N :=

N ∪ {∞}; we denote the set of such functions by Q(𝐴), which replaces Set
𝐴
. These sets come with

a natural pointwise ordering, a structure much simpler than the natural transformations in Set
𝐴
.

In this context, we found a new model where a term 𝑡 in context 𝑥 = {𝑥1, . . . , 𝑥𝑛} is interpreted
as a normal function: an order preserving function

J𝑥 | 𝑡K : Q(𝐴) × . . . × Q(𝐴) −→ Q(𝐴) (2)

which preserves directed suprema.

Definition 2. An order preserving function 𝑓 : Q(𝐴)𝑛 −→ Q(𝐵) is analytic if for any pair

(𝑥, 𝑏) ∈ Q(𝐴)𝑛 × 𝐵 we have

𝑓 (𝑥) (𝑏) = sup𝑢∈I(𝐴)𝑛 𝑓 (𝑢) (𝑏)𝛿𝑢≤𝑥 (3)

where

𝛿𝑢≤𝑥 =

{
1, 𝑢 ≤ 𝑥

0, otherwise

(4)

Theorem 3. Let 𝑓 : Q(𝐴)𝑛 −→ Q(𝐵) be order preserving. Then 𝑓 is normal if and only if it is
analytic.

Currying is realised in this model as a bijection between normal functions Q(𝐴)𝑛 × Q(𝐵) −→
Q(𝐶) and normal functions Q(𝐴)𝑛 −→ Q(I(𝐵) ×𝐶).
In order to reach a full model of the untyped lambda calculus, we fix a set 𝐴 which is countably

infinite. This assumption allows us to construct a bijection

𝑞 : I(𝐴) ×𝐴 −→ 𝐴. (5)

There is an induced bijection

𝑞 : Q(𝐴) −→ Q(I(𝐴) ×𝐴)
𝑎 ↦−→ 𝑎 ◦ 𝑞.
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Speaking loosely, the bijection 𝑞 allows a passage beginning at a normal function 𝑓 : Q(𝐴)𝑛 ×
Q(𝐴) −→ Q(𝐴) which can be curried to 𝑓 + : Q(𝐴)𝑛 −→ Q(I(𝐴) ×𝐴) and then composed with

𝑞−1 to obtain a function 𝑞−1 𝑓 + : Q(𝐴)𝑛 −→ Q(𝐴). This is how abstraction is modelled.

Lemma 4 (Substitution Lemma). Let 𝑡, 𝑠 be _-terms and 𝑥 = {𝑥1, . . . , 𝑥𝑛} be a collection of variables
and 𝑦 another variable so that 𝑥 ∪ {𝑦} is a valid context for 𝑡 and 𝑥 is a valid context for 𝑠 . Then for
any 𝛼 ∈ Q(𝐴)𝑛 we have

J𝑥 | 𝑡 [𝑦 := 𝑠]K(𝛼) = J𝑥,𝑦 | 𝑡K(𝛼, J𝑥 | 𝑠K(𝛼)) (6)

Theorem 5. This is a denotational model of the _-calculus. That is, if 𝑡 is a _-term and 𝑥 a valid
context for 𝑡 and for 𝑠 , then we have the following equality.

J𝑥 | (_𝑦.𝑡)𝑠K = J𝑥 | 𝑡 [𝑦 := 𝑠]K (7)

Having found this “decategorification” of Girard’s original work, we can “recategorify”: extract

the essential features to further clarify ‘why’ this model works and generate further models

sharing these features. Indeed, having reduced to functions into N, we could further consider

analogous functions into other sets. However, before embarking on this, we note that Girard also
decategorified his model, but in a different way. Where we have switched from functors to order

preserving functions, Girard switched the codomain of the functors from Set to the two point

category {0, 1} (admitting only identity morphisms). This lead to coherence spaces which Girard

now usually claims to be the origin of Linear Logic [2].

3 LINEAR LOGIC
What does one obtain from this model of _-calculus? One observation is that analytic functions

F : Q(𝐴) × · · · × Q(𝐴) −→ Q(𝐴), by (3), are determined by their restriction to the domain

I(𝐴) × . . . × I(𝐴). If we think of the untyped _-calculus as a typed system, where every term is of

the same type 𝐴, it appears as though I is modeling some unnoticed connective. Can our model be

decomposed to a semantics of a finer syntactic system? The “finer” granility will need to include

functions Q(𝐴) × · · · × Q(𝐴) −→ Q(𝐴) which are determined by their restrictions to the domain

𝐴 × · · · ×𝐴, and these are the additive functions!

Definition 6. Given sets 𝐴1, . . . , 𝐴𝑛, 𝐵, a function 𝑓 : Q(𝐴1) × . . . × Q(𝐴𝑛) −→ Q(𝐵) is additive if
it is linear in each argument. We denote the set of all additive functions

App(Q(𝐴1) × . . . × Q(𝐴𝑛),Q(𝐵)) (8)

Lemma 7. Let 𝐴1, . . . , 𝐴𝑛+1, 𝐵1, . . . , 𝐵𝑚 be sets. There is a bijection

App

(
Q(𝐴1) × . . . × Q(𝐴𝑛) × Q(𝐴𝑛+1),Q(𝐵)

)
−→ App

(
Q(𝐴1) × . . . × Q(𝐴𝑛),Q(𝐴𝑛+1 × 𝐵)

)
For example, if 𝑓 : Q(𝐴1) × . . . × Q(𝐴𝑛) × Q(𝐴𝑛+1) −→ Q(𝐵) is additive, 𝑎

𝑖
∈ Q(𝐴𝑖 ) for

𝑖 = 1, . . . , 𝑛 + 1, and 𝑏 ∈ 𝐵 is arbitrary, then

𝑓 (𝑎
1
, . . . , 𝑎

𝑛
, 𝑎

𝑛+1) (𝑏)

=
∑︁

𝑐1,...,𝑐𝑛+1∈𝐴1,...,𝐴𝑛+1

𝑎
1
(𝑐1) . . . 𝑎𝑛+1 (𝑐𝑛+1) 𝑓 (]1 (𝑐1), . . . , ]𝑛 (𝑐𝑛), ]𝑛+1 (𝑐𝑛+1)) (𝑏)

We define the map 𝑓 × : Q(𝐴1) × . . .Q(𝐴𝑛) −→ Q(𝐴𝑛+1 × 𝐵) as follows.
𝑓 × (𝑎

1
, . . . , 𝑎

𝑛
) (𝑐𝑛+1, 𝑏)

=
∑︁

𝑐1,...,𝑐𝑛∈𝐴1,...,𝐴𝑛

𝑎
1
(𝑐1) . . . 𝑎𝑛+1 (𝑐𝑛+1) 𝑓 (]1 (𝑐1), . . . , ]𝑛+1 (𝑐𝑛+1)) (𝑏)
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This is how we anticipate (R ⊸) in sequential linear logic to be modeled:

𝜋 ′

...

𝐴1, . . . , 𝐴𝑛, 𝐴𝑛+1 ⊢ 𝐵1, . . . , 𝐵𝑚 (R ⊸)
𝐴1, . . . , 𝐴𝑛 ⊢ ¬𝐴𝑛+1, 𝐵1, . . . , 𝐵𝑚

we take

J𝜋K = J𝜋 ′K× : Q(𝐴1) × . . . × Q(𝐴𝑛) −→ Q(𝐴𝑛+1 × 𝐵1 × . . . × 𝐵𝑚)

4 RECATEGORIFYING
The remainder of our work consists of a more technical contribution: the categorification of our

model to obtain a class of models for linear logic.

First of all, we observe that if we view all of the functions in the above discussion as functors,

then Int and I are functors Set → CAT of a rather specific form; namely, they are the class of

functors ‘of finite support’ into a category. In order for the notion of finite support to make sense,

we need a category C having a distinguished zero object 0, so that a finite support functor 𝑋 → C
is one which is equal to 0 at all but finitely many elements. We write

I(𝑋 ) := Fun𝑓 𝑠 (𝑋, C)
for the collection of such functors. In order for I to be functorial we need to include a ‘monoidal

sum’ ⊕ for which 0 is the unit; then a function 𝑋 → 𝑌 induces a function I(𝑋 ) → I(𝑌 ) via

I(𝑓 ) (𝐹 ) (𝑦) :=
⊕

𝑥∈ 𝑓 −1 (𝑦)
𝐹 (𝑥),

which is well-defined since there are only finitely many 𝑥 for which 𝐹 (𝑥) is not 0.

Remark 8. Since I is a small category, the same is true of I(𝑋 ) and we can compose with the

functor returning the set of (isomorphism classes of) objects in order to view it as an endofunctor

on Set. However, when we introduce Q below, we encounter size issues (at least in the original case

of Set
𝑋
considered by Girard). For simplicity, we will treat I and Q as endofunctors and monads

on Set in the present text. For a formal treatment which avoids the large cardinality assumptions

as Girard’s model was supposed to, we instead require relative pseudomonads.

In order for I to be a monad, we need a monoidal product ⊗ on C with a unit object 1 such that

⊗ distributes over ⊕. This enables us to reproduce the ‘singleton’ functor 𝛿𝑥 which is 1 at 𝑥 and 0

at 𝑥 ′ ≠ 𝑥 as the unit of the monad, and with multiplication

` : I(I(𝑋 )) → I(𝑋 )

(𝐺 : I(𝑋 ) → C) ↦→ ©«𝑥 ↦→
⊕

𝐹 ∈I(𝑋 )
𝐺 (𝐹 ) ⊗ 𝐹 (𝑥)ª®¬ ,

where once again the monoidal sum is well defined since𝐺 has finite support. The associativity

axiom for this multiplication map corresponds to the requirement that ⊗ distributes over ⊕. In
summary, the structure needed is that of a rig category, a category equipped with two unital

monoidal operations such that one distributes over the other.

Next, the general situation is which a class of structures is generated by its subclass of finite (or

finitely presented) structures is captured by the ind-completion (‘ind’ was originally an abbreviation

of ‘inductive’). The ind-completion Ind(C) of a category C is its free cocompletion under directed

colimits. This construction arises frequently in logic, and especially in universal algebra, because
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the class of models of an algebraic theory is always the ind-completion of the class of finitely

presentable models of that theory.

For a rig category C, Ind(C) inherits the structure of a rig category. It turns out that if the

monoidal sum ⊕ is semi-cartesian, meaning that 0 is an initial object, then Ind(C) actually
acquires infinite monoidal sums. With this added assumption, we can define

Q(𝑋 ) := Fun(𝑋, Ind(C)),
which is a relative pseudomonad with the extensions of the same definitions as above. The most

interesting part of this ‘recategorification’ is how we use relative pseudomonads, whereas the

standard story is to use a single comonad.

5 BICATEGORICAL SEMANTICS
Regular categorical models interpret cut-equivalent proofs as the same object to equality. Models

where two such proofs are identified only up to isomorphism in the model have been of recent

interest to many modern developments of the material presented here. However, our goal is to

simplify the categorical model given in Girard’s original paper and then to find an appropriate

categorification of this simplification. Indeed, we anticipate all equalities to be strict, and so the

bicategorical semantics research regime is only peripherally related to our work, and is not directly

relevant.
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