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1 CONTEXT AND INTUITION
Soon after the introduction of linear logic [2], Girard proposed a research program [6] aiming at
providing a mathematical representation of cut-elimination, or equivalently (through the proofs-as-
programs correspondence) of program execution. This program, named geometry of interaction,
quickly lead to the definition of several models [3–5] which in turn lead to the development of game
semantics [1, 12]. In early models, this mathematical operation was obtained through the so-called
execution formula, which was identified by Joyal, Street and Verity as an exemple of categorical
trace [14]. This work lead researchers to provide a categorical account of geometry of interaction
based on traced monoidal categories [11].
These models of geometry of interaction were studied from the point of view of providing a

model of programs and their execution. However, a key aspect of the construction, which took
more importance in later models, is that a model of (fragments of) linear logic could be defined on
top of this dynamic representation of programs by realisability techniques. These techniques are
on ideas similar to the definition of coherence spaces by means of an orthogonality relation [8, 13]
or the definition of realisability models over the lambda-calculus [15]. As such, one would expect
that they would fit the categorical framework of double gluing introduced by Hyland and Schalk
[13]. However, to our knowledge, no geometry of interaction models have been shown yet to be an
instance of double glueing.

As part of the geometry of interaction program, Interaction Graphs models were introduced by
the second author in a series of papers [16–21]. It provides a combinatorial approach to Girard’s
program. One major conceptual contribution of Interaction Graphs was to shed light on a geometric
identity underlying all previous geometry of interaction models introduced by Girard [3–5, 7, 9, 10].
Indeed, all these models are recovered as instances of the ig model for a specific choice of parameters.
The underlying geometric identity, called the trefoil property [18], relates paths and cycles in the
graph. As such, it generalises the usual "adjunction" in goi models: the property that ensures
monoidal closure of the induced category. The trefoil property turned out to be quite useful: beyond
ensuring the monoidal closure, it can be exploited to define a model of additive connectives1. But
while the adjunction could be related to a categorical property, the trefoil property seemed to elude
such interpretation.

Contributions. In this paper, we develop an idea mentioned in Seiller’s PhD thesis [17]. Namely,
that the two ingredients needed to define Interaction Graphs models – associativity of execution
and the trefoil property – are the low dimensional projections of a single higher-dimensional
associativity. We make this relation precise by considering categories of cobordisms. We recall that
Cob[𝑛] is the category whose objects are (𝑛−1)-dimensional manifolds and morphisms from𝐴 to 𝐵
∗T. Seiller was partially supported by the DIM RFSI project CoHOp, and the ANR ANR-22-CE48-0003-01 project DySCo.
1It was a standard issue of geometry of interaction: since execution is defined locally, the cut-elimination steps between
additive connectives is not represented "on the nose". Using the trefoil property, it can nevertheless be shown that these
steps are represented up to behavioural equivalence [18].
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(a) A 0-cobordism (b) A 1-cobordism

Fig. 1. Examples of cobordisms

are 𝑛-dimensional manifolds with boundaries 𝐴 ⊔ 𝐵. Given such a cobordismM, one can associate
a bipartite graph on 𝜋0 (𝐴) ⊔ 𝜋0 (𝐵) whose edges are paths – up to homotopy – between connected
components of𝐴 and connected components of 𝐵. One may also consider the set of cycles inM, i.e.
the fundamental groupoid Π1 (M). The intuition is that the associativity of execution and the trefoil
property are consequences of the associativity of composition in the category Cob[𝑛], through the
two functors thus defined.
We show this intuition to be correct when working with low-dimensional cobordisms (namely

the category Cob[0]). This formally presents (a submodel of) Interaction Graphs models as obtained
through a double-gluing construction. We explain the difficulties arising in extending the analysis
to higher-dimensional cobordisms, and propose a solution.

2 INTRODUCTION
Definition 1. The category Cob[𝑛] is defined as follows: Objects are smooth manifolds of dimen-
sion 𝑛. The set HomCob[n] (A,B) of morphisms from 𝐴 to 𝐵 is the set of smooth manifolds M of
dimension 𝑛 + 1 whose boundary 𝜕M is equal to 𝐴 ⊔ 𝐵.
Composition in the category is given by gluing cobordisms along their shared boundaries.

Formally, givenM ∈ HomCob[n] (A, B) and N ∈ HomCob[n] (B,C), the cobordism M;N is defined
as the smooth manifold (𝑀 ⊔ 𝑁 )/∼ where 𝑏M ∼ 𝑏N for all 𝑏 ∈ 𝐵.

Wewill be particularly interested in the categoryCob[0], whose objects are points andmorphisms
are segments and circles (see Figure 1a). The point of this paper is to formally relate Cob[0] to
Seiller’s Interactions graphs models. We therefore start by recalling basic constructions of the latter.

Definition 2. A directed graph 𝐺 is a tuple (𝑉𝐺 , 𝐸𝐺 , 𝑠𝐺 , 𝑡𝐺 ), where 𝑉𝐺 is a finite set of vertices,
𝐸𝐺 is the set of edges, and 𝑠𝐺 , 𝑡𝐺 – the source and target maps – are functions from 𝐸𝐺 to 𝑉𝐺 .

Definition 3. A path in a graph 𝐺 is a sequence of vertices 𝑒1𝑒2 . . . 𝑒𝑛 such that for all 𝑖 ∈
{1, . . . , 𝑛 − 1}, 𝑠𝐺 (𝑒𝑖+1) = 𝑡𝐺 (𝑒𝑖 ). The source 𝑠𝐺 (𝜋) (resp. the target 𝑡𝐺 (𝜋)) of the path 𝜋 is defined
as 𝑠𝐺 (𝑒1) (resp. 𝑡𝐺 (𝑒𝑚𝑛)). A cycle in a graph 𝐺 is a path 𝜋 = 𝑒1𝑒2 . . . 𝑒𝑛 such that 𝑠𝐺 (𝜋) = 𝑡𝐺 (𝜋).

Definition 4. An alternating path between two graphs𝐺,𝐻 is a sequence of edges 𝑒1𝑒2 . . . 𝑒𝑛 such
that for all 𝑖 ∈ {1, . . . 𝑛 − 1}, 𝑒𝑖 ∈ 𝐸𝐺 if and only if 𝑒𝑖+1 ∈ 𝐸𝐻 . The set of alternating paths between
𝐺 and 𝐻 will be denoted AltP(𝐺,𝐻 ).

An alternating cycle is an alternating path such that 𝑒1 ∈ 𝐸𝐺 if and only if 𝑒𝑛 ∈ 𝐸𝐻 . A cycle is
prime if it not of the form 𝜌𝑘 for 𝑘 > 1, i.e. it is not the concatenation of several copies of the same
cycle. The set of alternating prime cycles between 𝐺 and 𝐻 is denoted APrim(𝐺,𝐻 ).

Definition 5. The execution of two graphs 𝐺,𝐻 is the graph 𝐺 :: 𝐻 such that 𝑉𝐺 ::𝐻 = 𝑉𝐺 ⊖𝑉𝐻

(symmetric difference) and whose edges are the alternating paths of source and target in 𝑉𝐺 ⊖𝑉𝐻 .
Alternatively, 𝐺 :: 𝐻 is the graph of finite maximal alternating paths between 𝐺 and 𝐻 .
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(b) The associated graph

Fig. 2. The path functor F

One can check that execution endows the category of graphs bipartite graphs (where composition
is given by computing paths of length 2) with a categorical trace. From this we can define a category
of interaction graphs as an instance of the Int construction [14].

Definition 6. Objects of Int(Grph) are finite sets. A morphism 𝐹 : 𝐴 → 𝐵 is a graph on 𝐴 + 𝐵,
and composition is defined by the execution formula.

However we note that the category Int(Grph) is unsufficient to constrcut a model of multiplica-
tive linear logic. One needs "to extend it" to interpret proofs as a pair (called a project) (𝑎,𝐴) of a
real number 𝑎 – the wager – and a graph 𝐴. Then the notion of execution is extended from graphs
to projects as follows: (𝑎,𝐴) :: (𝑏, 𝐵) = (𝑎 + 𝑏 + J𝐴, 𝐵K𝑚, 𝐴 :: 𝐵), where J𝐴, 𝐵K𝑚 is a parametrized
measure of prime cycles, possibly using their weights. Since we consider here unweighted graphs,
this measure can only count prime cycles, i.e. J𝐴, 𝐵K𝑚 = Card(APrim(𝐴, 𝐵)). From these, one can
define a model by realisability techniques. We refer the interested reader to the original papers for
more details [16, 18].
Our goal is now to show that the following two notable properties, which are essential in

constructing igmodels, are the image of a higher-dimensional associativity (namely the associativity
of composition in Cob[𝑛]). Given three graphs 𝐹,𝐺, 𝐻 such that 𝑉 𝐹 ∩𝑉𝐺 ∩𝑉𝐻 = ∅:

• Associativity of execution: (𝐹 ::𝐺) :: 𝐻 � 𝐹 :: (𝐺 :: 𝐻 );
• Trefoil property: APrim(𝐹,𝐺 :: 𝐻 ) ⊔ APrim(𝐺,𝐻 ) ≃ APrim(𝐻, 𝐹 ::𝐺) ⊔ APrim(𝐹,𝐺).

3 Cob[0] : A SIMPLE, WORKING CASE
Looking back at our example of Cob[0], a naive approach would be to take as functor the funda-
mental groupoid. But this does not work, for this functor would not map the identity to the identity.
This can be corrected by excluding self-loops. While this constraint seems ad-hoc, we note the
proposed solution for higher-dimensional cobordisms will provide an alternative, more satisfying,
solution to this problem.

Definition 7. LetM be a cobordism in HomCob[1] (A, B). We define its fundamental graph Γ1 (M):
• 𝑉 Γ1 (M) = 𝐴 ⊔ 𝐵,
• 𝐸Γ1 (M) = {[𝑝] | 𝑝 : [0; 1] → M, 𝑝 (0) ≠ 𝑝 (1)},
• 𝑠Γ1 (M) ( [𝑝]) = 𝑝 (0), and 𝑡 Γ1 (M) ( [𝑝]) = 𝑝 (1).

We also consider F : Cob[0] → Int(Grph) acting as the identity on objects, and as Γ1 onmorphisms.

Functoriality of F is a consequence of the following result, whose proof is essentially the first
part of the proof of the Van-Kampen theorem.

Lemma 8. A path 𝑝 : [0; 1] → 𝐶1;𝐶2 has a unique (up to homotopy) decomposition 𝑝1, · · · 𝑝𝑛 as
alternating paths, ie with 𝑝𝑖 ⊆ 𝐶𝛿 (𝑖 ) , 𝛿 (𝑖) ≠ 𝛿 (𝑖 + 1) for a certain 𝛿 : [1;𝑛] → {1, 2}

Theorem 9. The mapping F : Cob[0] → Int(Grph) is a functor.
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(a) A path

(b) An homotopy equivalent path

Fig. 3. Counterexample to functoriality

However, this functor is not faithful as circles, the boundaryless components of the cobordism,
are entirely forgotten. For instance, the cobodisms shown in Figure 1a and Figure 2a are both
mapped to the graph shown in Figure 2b.

To extend it to a faithful functor, one can consider pairs of a graph and an integer counting the
numbers of such circles. This is exactly the role of wagers in interaction graphs models [17]. From
this observation, we define an extended functor F : Cob[0] → Project acting as the identity on
objects and mapping a cobordismM to (F (M), 𝑛M) on morphisms, with 𝑛M the number of loops
inM. Note that 𝑛M is characterised by the fundamental group of M: 𝜋1 (M) = Z𝑛M .

Theorem 10. The extended functor F is faithful.

This result has two consequences. Firstly, the bi-orthogonality construction that was used in
[16] was – at least on the subcategory F (Cob[0]) – a case of Hyland and Schalk tight double-
glueing w.r.t. a focused orthogonality [13]. Secondly, both the trefoil property and the associativity
of execution are but reflections of the associativity of composition in Cob[0] in lower dimensions.

4 HIGHER DIMENSIONS
4.1 Problems arising
The case of Cob[0], while interesting, is extremely limited. Since we are studying paths on surfaces,
the obtained graphs will always be symmetric, but only pairings are obtained from morphisms in
Cob[0], i.e. vertices are of degree exactly one. We can expect to obtain more graphs by considering
higher cobordisms categories; in fact this is already different in Cob[1]. Can we generalize the
previous section to Cob[𝑛], with 𝑛 ⩽ 1? Multiple obstacles appear if one tries to adapt the proof
that F is a functor.

First, one needs to define the vertices of the graph; where we had a point in Cob[0], we now have
an entire manifold. The simplest solution seems to take a vertex for each connected component of
the boundary manifolds, together with a representative point that would serve as base point for
the paths.
Second, one would like to decompose a path in F (𝐶1;𝐶2) as a finite sequence of alternating

paths of F (𝐶1) and F (𝐶2), but the situation is more complex. Here, this decomposition is not
unique, as illustrated in Figure 3 where we shown two paths that are homotopy equivalent in the
composition but can be decomposed in two different ways as a composition of two paths. Hence,
considering path only up to homotopy doesn’t give rise to a functor.
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4.2 Our proposal for a solution
Oneway to solve this issue would be to associate to a cobordism the set of all paths – not equivalence
classes up to homotopy. This option is not viable, since if the circle was located on the border we
wouldn’t have a unique decomposition. We therefore chose to follow a second option, based on
the introduction of a higher dimensional structure in the category of graphs that will allow to
identify compositions of paths such as shown in Figure 3. The intuition behind the formalism is
that the fundamental group of the border of the cobordism acts on equivalence classes of paths up
to homotopy both by pre-composition and post-composition. The set of paths up to homotopy can
therefore be considered as a set endowed with a right and a left action – much like a bi-module.
The composition of paths should therefore be quotiented by an equivalence akin to the quotient
performed in the definition of tensor product of bi-modules: [𝑝] · 𝑎 ∼ 𝑎 · [𝑝].
We therefore define a categorical structure in which each object 𝐴 is associated with a group

𝐺𝐴, and the set of morphisms Hom (A,B) is endowed with a left action by 𝐺 (𝐴) and a right
action by 𝐺 (𝐵). Composition is then defined up to the following identity: the composition of
𝑓 ∈ Hom (A,B) and 𝑔 ∈ Hom (B,C) is the equivalence class of 𝑓 ;𝑔 (to avoid left/right confusion,
we note composition sequentially) w.r.t. the identification of 𝑓 · 𝑏;𝑔 with 𝑓 ;𝑏 · 𝑔.

Definition 11. Abimodular graph is given as a tuple (𝑉𝐺 , 𝐸𝐺 , 𝑠𝐺 , 𝑡𝐺 , 𝛾𝐺 , 𝜆𝐺 , 𝜌𝐺 ), where (𝑉𝐺 , 𝐸𝐺 , 𝑠𝐺 , 𝑡𝐺 )
is a directed graph, and:

• 𝛾𝐺 : 𝑉𝐺 → Group associate to each vertex a group;
• 𝜆𝐺 maps pairs of vertices to left actions on edges between those, i.e. ∀𝑣, 𝑣 ′ ∈ 𝑉𝐺 , 𝜆𝐺 (𝑣, 𝑣 ′)
defines a left action of 𝛾𝐺 (𝑣) on 𝐸𝐺 (𝑣, 𝑣 ′);

• 𝜌𝐺 maps pairs of vertices to right actions on edges between those.

One can define a standard notion of composition of modular graphs in a similar way as for
graphs, as soon as the maps 𝛾 coincide on the common vertices: we define the composition as
the paths of length 2 modulo the identification informally explained above. Formally if 𝑒, 𝑒′ are
edges in 𝐸𝐹 (𝑣, 𝑣 ′) and 𝐸𝐺 (𝑣 ′, 𝑣 ′′) respectively, we identify the path 𝑒𝑒′ with 𝜌 (𝑏) (𝑒)𝜆(𝑏−1) (𝑒′) for
all 𝑏 ∈ 𝛾𝐺 (𝑣 ′).

The category of modular graphs defined in this way can be shown to be traced monoidal, defining
execution in the same way as before. The category obtained by the Int construction then generalises
the category of interaction graphs in a way that allows for identifying some compositions of paths,
hence avoiding the issue of non-unicity of decomposition shown in Figure 3. It therefore provides
a good candidate to extend the mapping defined in the previous section from Cob[0] to Cob[1],
and possibly to higher dimensional cobordisms.

5 FUTURE DIRECTIONS
This work opens up several directions that we would like to explore.

Firstly, cobordisms – and glueing of cobordisms – are a particular case of the categorical notion
of cospan. We can envision to generalize our approach to more general topological spaces (e.g.
simplicial sets) using cospans.

Secondly, this work only captures the case of symmetric graphs. It may be possible to extend the
techniques to obtain general directed graphs by considering directed spaces, and using methods
from directed algebraic topology.
Finally, one interesting aspect of cobordisms categories is that Cob[𝑛] is a the category of

morphisms between identities in Cob[𝑛 − 1]. As a consequence, consideration of the family of
models obtained from Cob[𝑛] for all 𝑛 could be of interests to approach the question of linear
dependent types.
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