ON THE COMPLEXITY OF NORMALIZATION FOR THE PLANAR λ-CALCULUS

ANUPAM DAS, DAMIANO MAZZA, LÊ THÀNH DŨNG (TITO) NGUYỄN, NOAM ZEILBERGER

Recall that an untyped λ-term t is linear if there exists a list Γ - the list of free variables in t - such that $\Gamma \vdash t$ is derivable with the rules below (with Γ and Δ disjoint in app):

$$
\frac{}{x \vdash x} \operatorname{var} \quad \frac{\Gamma \vdash t \Delta \vdash u}{\Gamma, \Delta \vdash t u} \text { app } \quad \frac{\Gamma, x \vdash t}{\Gamma \vdash \lambda x . t} \operatorname{lam} \quad \frac{\Gamma, y, x, \Delta \vdash t}{\Gamma, x, y, \Delta \vdash t} \text { exc }
$$

Call a linear λ-term t planar when there is an ordered list Γ such that $\Gamma \vdash t$ is derivable in the subsystem without the exc rule: for example, $\lambda x . \lambda y . f x y$ is planar but $\lambda x . \lambda y . f y x$ is not. Planar λ-terms are closed under β-reduction. Furthermore, this notion is motivated by semantics (non-symmetric monoidal closed categories), topology (a linear λ-term is planar when its representation as a syntax tree with binding edges is a planar combinatorial map) and linguistics (in the Lambek calculus Lam58, a precursor of linear logic).

Less attention has been paid, however, to the computational consequences of planarity. There is a recent implicit complexity result [NP20 using planar λ-terms, where general linear λ-terms would be too expressive. Here, we focus on the complexity of normalizing λ-terms, asking ourselves whether planarity lowers it. For linear (possibly non-planar) λ-terms, we know that:

Theorem 0.1 (Mai04). The following decision problem is P -complete under logarithmic space reductions:

- Input: two (untyped) linear λ-terms t and u.
- Output: are t and $u \beta$-convertible, that is, do they have the same normal form?
(Note that the complexity of the β-convertibility problem for simply typed (possibly non-linear) λ-terms is much higher, namely TOWER-complete - this is implicit in [Sta79], as explained in Ngu23.)

We believe that this problem is still P -complete when t and u are planar. Two years ago, we claimed this as a theorem ${ }^{1}$ but the proposed proof - which purported to provide a logspace reduction from the Circuit Value Problem (CVP), just like Mairson's proof of Theorem 0.1 - contained a subtle yet serious flaw, described at the end of Section 2

In this extended abstract, we outline another attempt to reduce CVP to planar normalization.

1. The Circuit Value Problem

For our purposes, a boolean circuit with n gates can be seen as a list of n equations defining the values of the boolean variables x_{1}, \ldots, x_{n}, such as the following example:

$$
x_{1}:=1 ; x_{2}:=0 ; x_{3}:=1 ; x_{4}=x_{1} \wedge x_{2} ; x_{5}=\neg x_{1} ; x_{6}=x_{5} \wedge x_{3} ; x_{7}=x_{4} \vee x_{6}
$$

Here, equations 4 to 7 define $x_{7}=\left(x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge x_{3}\right)=$ if x_{1} then x_{2} else x_{3}, so the final result of the circuit is (if 1 then 0 else 1) $=0$. In each equation, the right-hand side contains either a constant $0 / 1$ or the application of an operator \neg, \wedge, \vee. Furthermore, we require that in the latter case, the arguments given to the operator have been defined before the current equation; in other words, the enumeration x_{1}, x_{2}, \ldots is a topological ordering of the circuit.

Theorem 1.1 (GHR95, Theorem 6.2.1]). The Topologically Ordered Circuit Value Problem (TopCVP), defined below, is P -complete.

- Input: a topologically ordered boolean circuit, as in the above example.
- Output: the final value computed by the circuit.

[^0]
2. Planar booleans do not suffice

To encode the Circuit Value Problem in the linear λ-calculus, Mairson Mai04 uses a linear encoding of booleans. Unfortunately, his encoding represents 0 as a non-planar λ-term, namely $\lambda x . \lambda y . \lambda f . f y x$.

A planar linear encoding of booleans has been introduced in Ngu21, Chapter 7] to give a strictly linear variant of the previously mentioned result of [NP20], whose original statement used planar affine λ-terms.

$$
\text { false }=\lambda k . \lambda f . k f(\lambda x . x) \quad \text { true }=\lambda k . \lambda f . k(\lambda x . x) f
$$

While our reduction targets untyped λ-terms, it can be useful to think of these terms as the only inhabitants in normal form of the type

$$
\text { Bool }=\forall \alpha \beta .((\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha) \multimap \beta) \multimap(\alpha \multimap \alpha) \multimap \beta
$$

This can be seen as the image, by a continuation-passing-style transformation, of an encoding using linear λ-terms with pairs proposed by Matsuoka Mat15 in his alternative proof of Theorem 0.1

$$
\mathrm{false}^{\prime}=\lambda f .(f, \lambda x . x) \quad \operatorname{true}^{\prime}=\lambda f .(\lambda x . x, f) \quad \text { Bool }^{\prime}=\forall \alpha .(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha) \otimes(\alpha \multimap \alpha)
$$

We can also define boolean connectives acting on the encodings of Ngu21 (we have cstt $b={ }_{\beta}$ true and $\operatorname{cstf} b={ }_{\beta}$ false for $b \in\{$ true, false $\}$, using the notations id $=\lambda x . x$ and $f \circ g=\lambda x . f(g x)$:

$$
\begin{aligned}
\mathrm{cstt} & =\lambda b \cdot \lambda k \cdot \lambda f \cdot b(\lambda g \cdot \lambda h \cdot k \text { id }(g \circ h)) f \\
\text { cstf } & =\lambda b \cdot \lambda k \cdot \lambda f \cdot b(\lambda g \cdot \lambda h \cdot k(g \circ h) \mathrm{id}) f \\
\text { not } & =\lambda b \cdot b(\lambda g \cdot \lambda h \cdot g(\operatorname{cstt}(h \text { true }))) \mathrm{cstf} \\
\text { and } & =\lambda b_{1} \cdot \lambda b_{2} \cdot \lambda k \cdot b_{1}\left(\lambda f_{1} \cdot b_{2}\left(\lambda f_{2} \cdot \lambda f_{3} \cdot k\left(\lambda x \cdot f_{1}\left(f_{2} x\right)\right) f_{3}\right)\right)
\end{aligned}
$$

(disjunction can be derived by De Morgan's laws). This is enough to translate boolean formulas into planar linear λ-terms.

However, to transpose Mairson's methodology for encoding boolean circuits to the planar linear setting, we would need a planar λ-term copy such that (similarly to the W combinator in Curry's BCKW)

$$
\forall t \in\{\text { true }, \text { false }\}, \text { copy } f t={ }_{\beta} f t t
$$

We have not been able to find such a term; we did manage to define a planar λ-term copy ${ }^{\prime}$ that satisfies copy $^{\prime} t f={ }_{\beta} f t t$, but this is significantly different in a planar setting. Hence the gap in our previous attempt at reducing CVP to β-convertibility of planar λ-terms.

3. A new encoding of TopCVP

Our new idea is to work with an encoding of bit vectors, on which we implement the following operations:

$$
\operatorname{not}_{i, n}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\left\langle x_{1}, \ldots, x_{n}, \neg x_{i}\right\rangle \quad \text { and }_{i, j, n}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\left\langle x_{1}, \ldots, x_{n}, x_{i} \wedge x_{j}\right\rangle
$$

and the analogous or ${ }_{i, j, n}$, false $_{n}$, true $_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ for $1 \leq i, j \leq n$. Let also last ${ }_{n}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=x_{n}$.
The value of our example circuit from Section 1 can then be expressed, using these operations, as

$$
\text { last }_{7} \circ \text { or }_{4,6,6} \circ \text { and }_{5,3,5} \circ \operatorname{not}_{1,4} \circ \text { and }_{1,2,3} \circ \text { true }_{2} \circ \text { false }_{1} \circ \operatorname{true}_{0}(\langle \rangle)
$$

3.1. Representation of bit vectors. Unsurprisingly, we use the Church encoding of k-tuples, together with the above-mentioned type Bool, to represent vectors of k bits. For instance, $\langle 0,1,0\rangle$ is encoded as

$$
\overline{\langle 0,1,0\rangle}=\lambda k . k \text { false true false }
$$

which should be seen as an inhabitant of the type

$$
\mathrm{Bool}_{3}=\forall \gamma .(\text { Bool } \multimap \text { Bool } \multimap \text { Bool } \multimap \gamma) \multimap \gamma
$$

3.2. Implementing vectorial operations. First, we implement fetch ${ }_{i, n}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\left\langle x_{1}, \ldots, x_{n}, x_{i}\right\rangle$:
$\mathrm{fetch}_{i, n}=\lambda v . v\left(\lambda x_{1} \ldots \lambda x_{n} . x_{1} c_{1} f_{1}\left(\ldots\left(x_{n} c_{n} f_{n} \overline{\langle 0, \ldots, 0\rangle}\right) \ldots\right)\right)$
where $c_{j}= \begin{cases}\lambda g \cdot \lambda h \cdot\left(g \circ\left(\lambda k \cdot \lambda b_{1} \ldots \lambda b_{n+1} \cdot k b_{1} \ldots b_{i-1}\left(\operatorname{cstt} b_{i}\right) b_{i+1} \ldots b_{n}\left(\operatorname{cstt} b_{n+1}\right)\right) \circ h\right) & \text { if } i=j \\ \lambda g \cdot \lambda h \cdot\left(g \circ\left(\lambda k \cdot \lambda b_{1} \ldots \lambda b_{n+1} \cdot k b_{1} \ldots b_{j-1}\left(\operatorname{cstt} b_{j}\right) b_{j+1} \ldots b_{n+1}\right) \circ h\right) & \text { otherwise }\end{cases}$
and $f_{j}= \begin{cases}\lambda k . \lambda b_{1} \ldots \lambda b_{n+1} \cdot k b_{1} \ldots b_{i-1}\left(\operatorname{cstf} b_{i}\right) b_{i+1} \ldots b_{n}\left(\operatorname{cstf} b_{n+1}\right) & \text { if } i=j \\ \lambda k . \lambda b_{1} \ldots \lambda b_{n+1} \cdot k b_{1} \ldots b_{j-1}\left(\operatorname{cstf} b_{j}\right) b_{j+1} \ldots b_{n+1} & \text { otherwise }\end{cases}$
Note that by replacing every cstt b_{n+1} by cstf b_{n+1} and vice versa, we get an implementation of not ${ }_{i, n}$!
We then set $\operatorname{and}_{i, j, n}=\operatorname{and}_{n}^{\prime} \circ \mathrm{fetch}_{i, n+1} \circ \mathrm{fetch}_{j, n}$ where $\mathrm{and}_{n}^{\prime}$ implements an in-place conjunction

$$
\operatorname{and}_{n}^{\prime}\left(\left\langle x_{1}, \ldots, x_{n+2}\right\rangle\right)=\left\langle x_{1}, \ldots, x_{n}, x_{n+1} \wedge x_{n+2}\right\rangle
$$

To define $\mathrm{and}_{n}^{\prime}$, we reuse the planar λ-term and that implements the conjunction on the booleans of Section 2

$$
\operatorname{and}_{n}^{\prime}=\lambda v \cdot \lambda k \cdot v\left(\lambda x_{1} \ldots \lambda x_{n+2} \cdot k x_{1} \ldots x_{n}\left(\text { and } x_{n+1} x_{n+2}\right)\right)
$$

Finally, we take:

$$
\operatorname{last}_{i, n}=\lambda v \cdot v\left(\lambda x_{1} \ldots \lambda x_{n} \cdot x_{1}(\lambda g . \lambda h . g \circ h) \operatorname{id}\left(\ldots\left(x_{n-1}(\lambda g . \lambda h . g \circ h) \text { id } x_{n}\right) \ldots\right)\right)
$$

References

[GHR95] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, 06 1995. doi:10.1093/oso/9780195085914.001.0001.
[Lam58] Joachim Lambek. The mathematics of sentence structure. The American Mathematical Monthly, 65(3):154-170, 1958. doi:10.1080/00029890.1958.11989160
[Mai04] Harry G. Mairson. Linear lambda calculus and PTIME-completeness. Journal of Functional Programming, 14(6):623633, November 2004. doi:10.1017/S0956796804005131.
[Mat15] Satoshi Matsuoka. A new proof of P-time completeness of linear lambda calculus. In Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe, and Andrei Voronkov, editors, 20th International Conferences on Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations, LPAR 2015, Suva, Fiji, November 24-28, 2015, volume 35 of EPiC Series in Computing, pages 119-130. EasyChair, 2015. doi:10.29007/svwc
[Ngu21] Lê Thành Dũng Nguyễn. Implicit automata in linear logic and categorical transducer theory. PhD thesis, Université Paris XIII (Sorbonne Paris Nord), December 2021. URL: https://nguyentito.eu/thesis.pdf
[Ngu23] Lê Thành Dũng Nguyễn. Simply typed convertibility is TOWER-complete even for safe lambda-terms, 2023. arXiv: 2305.12601.
[NP20] Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit automata in typed λ-calculi I: aperiodicity in a non-commutative logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47 th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 135:1-135:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs. ICALP. 2020.135
[Sta79] Richard Statman. The typed λ-calculus is not elementary recursive. Theoretical Computer Science, 9:73-81, 1979. Journal version of a FOCS 1977 paper. doi:10.1016/0304-3975(79)90007-0

[^0]: ${ }^{1}$ In a talk at the Structure Meets Power 2021 workshop: http://noamz.org/talks/smp.2021.06.28.pdf
 1

