
ON THE COMPLEXITY OF NORMALIZATION FOR THE PLANAR λ-CALCULUS

ANUPAM DAS, DAMIANO MAZZA, LÊ THÀNH DŨNG (TITO) NGUYỄN, NOAM ZEILBERGER

Recall that an untyped λ-term t is linear if there exists a list Γ – the list of free variables in t – such that
Γ ⊢ t is derivable with the rules below (with Γ and ∆ disjoint in app):

x ⊢ x
var Γ ⊢ t ∆ ⊢ u

Γ, ∆ ⊢ t u
app

Γ, x ⊢ t

Γ ⊢ λx.t
lam

Γ, y, x, ∆ ⊢ t

Γ, x, y, ∆ ⊢ t
exc

Call a linear λ-term t planar when there is an ordered list Γ such that Γ ⊢ t is derivable in the subsystem
without the exc rule: for example, λx. λy. f x y is planar but λx. λy. f y x is not. Planar λ-terms are closed
under β-reduction. Furthermore, this notion is motivated by semantics (non-symmetric monoidal closed
categories), topology (a linear λ-term is planar when its representation as a syntax tree with binding edges
is a planar combinatorial map) and linguistics (in the Lambek calculus [Lam58], a precursor of linear logic).

Less attention has been paid, however, to the computational consequences of planarity. There is a recent
implicit complexity result [NP20] using planar λ-terms, where general linear λ-terms would be too expressive.
Here, we focus on the complexity of normalizing λ-terms, asking ourselves whether planarity lowers it. For
linear (possibly non-planar) λ-terms, we know that:

Theorem 0.1 ([Mai04]). The following decision problem is P-complete under logarithmic space reductions:
• Input: two (untyped) linear λ-terms t and u.
• Output: are t and u β-convertible, that is, do they have the same normal form?

(Note that the complexity of the β-convertibility problem for simply typed (possibly non-linear) λ-terms
is much higher, namely TOWER-complete – this is implicit in [Sta79], as explained in [Ngu23].)

We believe that this problem is still P-complete when t and u are planar. Two years ago, we
claimed this as a theorem1 but the proposed proof – which purported to provide a logspace reduction from
the Circuit Value Problem (CVP), just like Mairson’s proof of Theorem 0.1 – contained a subtle yet serious
flaw, described at the end of Section 2.

In this extended abstract, we outline another attempt to reduce CVP to planar normalization.

1. The Circuit Value Problem

For our purposes, a boolean circuit with n gates can be seen as a list of n equations defining the values of
the boolean variables x1, . . . , xn, such as the following example:

x1 := 1; x2 := 0; x3 := 1; x4 = x1 ∧ x2; x5 = ¬x1; x6 = x5 ∧ x3; x7 = x4 ∨ x6

Here, equations 4 to 7 define x7 = (x1 ∧ x2) ∨ (¬x1 ∧ x3) = if x1 then x2 else x3, so the final result of the
circuit is (if 1 then 0 else 1) = 0. In each equation, the right-hand side contains either a constant 0/1 or the
application of an operator ¬, ∧, ∨. Furthermore, we require that in the latter case, the arguments given to
the operator have been defined before the current equation; in other words, the enumeration x1, x2, . . . is a
topological ordering of the circuit.

Theorem 1.1 ([GHR95, Theorem 6.2.1]). The Topologically Ordered Circuit Value Problem (TopCVP),
defined below, is P-complete.

• Input: a topologically ordered boolean circuit, as in the above example.
• Output: the final value computed by the circuit.

1In a talk at the Structure Meets Power 2021 workshop: http://noamz.org/talks/smp.2021.06.28.pdf
1

http://noamz.org/talks/smp.2021.06.28.pdf

2. Planar booleans do not suffice

To encode the Circuit Value Problem in the linear λ-calculus, Mairson [Mai04] uses a linear encoding of
booleans. Unfortunately, his encoding represents 0 as a non-planar λ-term, namely λx. λy. λf. f y x.

A planar linear encoding of booleans has been introduced in [Ngu21, Chapter 7] to give a strictly linear
variant of the previously mentioned result of [NP20], whose original statement used planar affine λ-terms.

false = λk. λf. k f (λx. x) true = λk. λf. k (λx. x) f

While our reduction targets untyped λ-terms, it can be useful to think of these terms as the only inhabitants
in normal form of the type

Bool = ∀αβ. ((α ⊸ α) ⊸ (α ⊸ α) ⊸ β) ⊸ (α ⊸ α) ⊸ β

This can be seen as the image, by a continuation-passing-style transformation, of an encoding using linear
λ-terms with pairs proposed by Matsuoka [Mat15] in his alternative proof of Theorem 0.1:

false′ = λf. (f, λx. x) true′ = λf. (λx. x, f) Bool′ = ∀α. (α ⊸ α) ⊸ (α ⊸ α) ⊗ (α ⊸ α)

We can also define boolean connectives acting on the encodings of [Ngu21] (we have cstt b =β true and
cstf b =β false for b ∈ {true, false}), using the notations id = λx. x and f ◦ g = λx. f (g x):

cstt = λb. λk. λf. b (λg. λh. k id (g ◦ h)) f

cstf = λb. λk. λf. b (λg. λh. k (g ◦ h) id) f

not = λb. b (λg. λh. g (cstt (h true))) cstf

and = λb1. λb2. λk. b1 (λf1. b2 (λf2. λf3. k (λx. f1 (f2 x)) f3))

(disjunction can be derived by De Morgan’s laws). This is enough to translate boolean formulas into planar
linear λ-terms.

However, to transpose Mairson’s methodology for encoding boolean circuits to the planar linear setting,
we would need a planar λ-term copy such that (similarly to the W combinator in Curry’s BCKW)

∀t ∈ {true, false}, copy f t =β f t t

We have not been able to find such a term; we did manage to define a planar λ-term copy′ that satisfies
copy′ t f =β f t t, but this is significantly different in a planar setting. Hence the gap in our previous attempt
at reducing CVP to β-convertibility of planar λ-terms.

3. A new encoding of TopCVP

Our new idea is to work with an encoding of bit vectors, on which we implement the following operations:

noti,n(⟨x1, . . . , xn⟩) = ⟨x1, . . . , xn, ¬xi⟩ andi,j,n(⟨x1, . . . , xn⟩) = ⟨x1, . . . , xn, xi ∧ xj⟩

and the analogous ori,j,n, falsen, truen : {0, 1}n → {0, 1}n+1 for 1 ≤ i, j ≤ n. Let also lastn(⟨x1, . . . , xn⟩) = xn.
The value of our example circuit from Section 1 can then be expressed, using these operations, as

last7 ◦ or4,6,6 ◦ and5,3,5 ◦ not1,4 ◦ and1,2,3 ◦ true2 ◦ false1 ◦ true0(⟨⟩)

3.1. Representation of bit vectors. Unsurprisingly, we use the Church encoding of k-tuples, together
with the above-mentioned type Bool, to represent vectors of k bits. For instance, ⟨0, 1, 0⟩ is encoded as

⟨0, 1, 0⟩ = λk. k false true false

which should be seen as an inhabitant of the type

Bool3 = ∀γ. (Bool ⊸ Bool ⊸ Bool ⊸ γ) ⊸ γ
2

3.2. Implementing vectorial operations. First, we implement fetchi,n(⟨x1, . . . , xn⟩) = ⟨x1, . . . , xn, xi⟩:

fetchi,n = λv. v (λx1. . . . λxn. x1 c1 f1 (. . . (xn cn fn ⟨0, . . . , 0⟩) . . .))

where cj =
{

λg. λh. (g ◦ (λk. λb1. . . . λbn+1. k b1 . . . bi−1 (cstt bi) bi+1 . . . bn (cstt bn+1)) ◦ h) if i = j

λg. λh. (g ◦ (λk. λb1. . . . λbn+1. k b1 . . . bj−1 (cstt bj) bj+1 . . . bn+1) ◦ h) otherwise

and fj =
{

λk. λb1. . . . λbn+1. k b1 . . . bi−1 (cstf bi) bi+1 . . . bn (cstf bn+1) if i = j

λk. λb1. . . . λbn+1. k b1 . . . bj−1 (cstf bj) bj+1 . . . bn+1 otherwise
Note that by replacing every cstt bn+1 by cstf bn+1 and vice versa, we get an implementation of noti,n!

We then set andi,j,n = and′
n ◦ fetchi,n+1 ◦ fetchj,n where and′

n implements an in-place conjunction
and′

n(⟨x1, . . . , xn+2⟩) = ⟨x1, . . . , xn, xn+1 ∧ xn+2⟩
To define and′

n, we reuse the planar λ-term and that implements the conjunction on the booleans of Section 2:
and′

n = λv. λk. v (λx1. . . . λxn+2. k x1 . . . xn (and xn+1 xn+2))
Finally, we take:

lasti,n = λv. v (λx1. . . . λxn. x1 (λg. λh. g ◦ h) id (. . . (xn−1 (λg. λh. g ◦ h) id xn) . . .))

References
[GHR95] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Computation: P-Completeness

Theory. Oxford University Press, 06 1995. doi:10.1093/oso/9780195085914.001.0001.
[Lam58] Joachim Lambek. The mathematics of sentence structure. The American Mathematical Monthly, 65(3):154–170, 1958.

doi:10.1080/00029890.1958.11989160.
[Mai04] Harry G. Mairson. Linear lambda calculus and PTIME-completeness. Journal of Functional Programming, 14(6):623–

633, November 2004. doi:10.1017/S0956796804005131.
[Mat15] Satoshi Matsuoka. A new proof of P-time completeness of linear lambda calculus. In Ansgar Fehnker, Annabelle

McIver, Geoff Sutcliffe, and Andrei Voronkov, editors, 20th International Conferences on Logic for Programming,
Artificial Intelligence and Reasoning - Short Presentations, LPAR 2015, Suva, Fiji, November 24-28, 2015, volume 35
of EPiC Series in Computing, pages 119–130. EasyChair, 2015. doi:10.29007/svwc.

[Ngu21] Lê Thành Dũng Nguyễn. Implicit automata in linear logic and categorical transducer theory. PhD thesis, Université
Paris XIII (Sorbonne Paris Nord), December 2021. URL: https://nguyentito.eu/thesis.pdf.

[Ngu23] Lê Thành Dũng Nguyễn. Simply typed convertibility is TOWER-complete even for safe lambda-terms, 2023. arXiv:
2305.12601.

[NP20] Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit automata in typed λ-calculi I: aperiodicity in a non-commutative
logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume
168 of LIPIcs, pages 135:1–135:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.135.

[Sta79] Richard Statman. The typed λ-calculus is not elementary recursive. Theoretical Computer Science, 9:73–81, 1979.
Journal version of a FOCS 1977 paper. doi:10.1016/0304-3975(79)90007-0.

3

https://doi.org/10.1093/oso/9780195085914.001.0001
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1017/S0956796804005131
https://doi.org/10.29007/svwc
https://nguyentito.eu/thesis.pdf
http://arxiv.org/abs/2305.12601
http://arxiv.org/abs/2305.12601
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.1016/0304-3975(79)90007-0

	1. The Circuit Value Problem
	2. Planar booleans do not suffice
	3. A new encoding of TopCVP
	3.1. Representation of bit vectors
	3.2. Implementing vectorial operations

	References
	Appendix A. Overly complicated encoding
	A.1. Representation of bit vectors
	A.2. Implementing vectorial operations

