Unifying Graded Linear Logic and Differential Operators

Flavien Breuvart
LIPN, Université Sorbonne Paris Nord (breuvart@lipn.fr)

Marie Kerjean
CNRS, LIPN, Université Sorbonne Paris Nord (kerjean@lipn.fr)

Simon Mirwasser
LIPN, Université Sorbonne Paris Nord (mirwasser@lipn.fr)

1 Introduction

Linear logic (LL) [7] and its differential counterpart [4] give a framework to study resource usages
of proofs and programs. These logics were invented by enriching the syntax of proofs with
new constructions observed in denotational models of A-calculus. The exponential connective !
introduces non-linearity in the context of linear proofs and encapsulate the notion of resource
usage. This notion was refined into parametrised exponentials [8, 3, 5, 6], where exponential
connectives are indexed by annotations specifying different behaviors. Our aim here is to follow
Kerjean’s former works [9] by indexing formulas of Linear Logic with Differential Operators.
Thanks to the setting of Bounded Linear Logic, we formalize and deepen the connection between
Differential Linear Logic and Differential Operators.

The fundamental linear decomposition of LL is the decomposition of the usual non-linear
implication = into a linear one —o from a set of resources represented by the new connective !:
(A= B) = (A — B). Bounded Linear Logic (BLL) [8] was introduced as the first attempt to use
typing systems for complexity analysis. But our interest for this logic stems from the fact that
it extends LL with several exponential connectives which are indexed by polynomially bounded
intervals. Since then, some other indexations of LL have been developed for many purposes,
for example IndLL [3] where the exponential modalities are indexed by some functions, or the
graded logic BsLL [2, 6, 11] where they are indexed by the elements of a semiring S. This
theoretical development finds applications in programming languages.

Differential linear logic [4] (DiLL) consists in an a priori distinct approach to linearity, and
is based on the denotational semantics of linear proofs in terms of linear functions. In the
syntax of LL, the dereliction rule states that if a proof is linear, one can then forget its linearity
and consider it as non-linear. To capture differentiation, DiLL is based on a codereliction rule
which is the syntactical opposite of the dereliction. It states that from a non-linear proof (or a
non-linear function) one can extract a linear approximation of it, which, in terms of functions,
is exactly the differential (one can notice that here, the analogy with resources does not work).
Then, models of DiLL interpret the codereliction by different kinds of differentiation [1].

A first step towards merging the graded and the differential extension of LL was made by
Kerjean in 2018 [9]. In this paper, she defines an extension of DiLL, named D-DiLL, in which the
exponential connectives 7 and ! are indexed with a fized linear partial differential operator with
constant coefficients (LPDOcc) D. There, formulas !|pA and ?p A are respectively interpreted in
a denotational model as spaces of functions or distributions which are solutions of the differential
equation induced by D. The dereliction and codereliction rules then represent respectively the
resolution of a differential equation and the application of a differential operator. This is a

significant step forward in our aim to make the theory of programming languages and functional
analysis closer, with a Curry-Howard perspective. In this work, we will generalize D-DiLL to a
logic indexed by a monoid of LPDOcc.

Contributions. This work considerably generalizes, corrects and consolidates the extention
of DiLL to differential operators sketched in [9]. It extends D-DiLL in the sense that the logic is
now able to deal with all LPDOcc and combine their action. It corrects D-DiLL as the denota-
tional interpretation of indexed exponential 7p and !p are changed, leaving the interpretation
of inference rules unchanged but reversing their type in a way that is now compatible with
graded logics. Finally, this work consolidates D-DiLL by proving a cut-elimination procedure in
the graded case, making use of an algebraic property on the monoid of LPDOcc.

2 Linear logic and its extensions

Linear Logic refines Classical Logic by introducing a notion of linear proofs. Differentiation
is then introduced through a “codereliction” rule d, which is symmetrical to d and allows to
linearize a non-linear proof [4]. To express the cut-elimination with the promotion rule, other
costructural rules are needed, which find a natural interpretation in terms of differential calculus.
Ww FT,!A FAA < FT,A 3
: FT,AIA FT,!A

Recently, Kerjean [9] gave an interpretation of the connective ? by a space of smooth scalar
functions, while ! is interpreted as the space of linear maps acting on those functions, that is a
space of distributions:

[74] := C=([A], R) [1A] == C>([A], R)".

Nicely, every exponential rule of DiLL has an interpretation in terms of functions and dis-
tributions.

A first advance in merging the graded and the differential extensions of LL was made by
Kerjean in 2018 [9]. In this paper, she defines an extension of DiLL named D-DiLL. This logic
is based on a fized single linear partial differential operator D, which appears as a single index
in exponential connectives !p and 7p.

Definition 2.1. Let D be a LPDOcc. A fundamental solution of D is a distribution ®p €
C>®(R™,R) such that D(®p) = dp.

Theorem 2.2 (Malgrange-Ehrenpreis). Fvery linear partial differential operator with constant
coefficients admits exactly one fundamental solution.

Using this result, D-DiLL gives new definitions for d and d, depending of a LPDOcc D:
dp:f—=>®pxf dp:¢p— ¢poD.

Indexed linear logics: resources, effects and coeffects Since Girard’s original BLL [§],
several systems have implemented indexed exponentials to keep track of resource usage. More
recently, several authors [6, 5, 2] have defined a modular (but a bit less expressive) version
BsLL where the exponentials are indexed (more specifically “graded”, as in graded algebras) by
elements of a given semiring S. The rules of BgLL are as follow.
T'RB rL.AWAFDB I' A+ B e A, .o e, A E B
TooAFB " T AFB ¢ TLAFBY L AL lgAnF B "

Finally, a subtyping rule is also added, which uses the order of §.

r.,A+B xgyd
T,!,A- B !

FT FT,7,A,7,A FT, 7, A <y FT, A

FT, %4 FT, 7 A © FT,7,4 dr FT,74 ¢
- FT LA FALA FLLA a<y FT,A
oA FT A LA © FT,1,A I 1,14 d

Figure 1: Exponential rules of DBgLL

FT w |—F7?D1A,?D2A l‘F,?DlA
T WM c —————d;
FT,7pA FT,7p,00,A =T, 7p0p, A

Wy FT,!p, A FAlp,A FT,p, A
FipA c T
FT,A,!'pop, A FT,!pop, A

Figure 2: Exponential rules of IDiLL

3 Unifying graded linear logic and differential operators

We define a differential version of BsLL by extending its set of exponential rules. Here, we
will restrict ourselves to a version without promotion, as it has been done for DiLL originally.
Following the ideas behind DiLL, we add costructural exponential rules: a coweakening w, a
cocontraction ¢, an indexed codereliction d; and a codereliction d. The set of exponential rules
of our new logic DBgLL is given in Figure 1. Note that by doing so we study a classical version
of BsLL, with an involutive linear duality.

Theorem 3.1. The logic DBsLL has a cut elimination procedure when S is additive splitting.

An indexed differential linear logic The logic DBgLL is a syntactical differentiation of
BLL, as it uses the idea that differentiation is expressed through co-structural rules that mirror
the structural rules of LL. Here we will take a semantical point of view: starting from differential
linear logic, we will index it with LPDOcc into a logic named IDiLL, and then study the relation
between DBgLL and IDiLL.

Kerjean generalized d and d in previous work [9], with the idea that in DiLL, the codereliction
corresponds to the application of the differential operator Dy whereas the dereliction corresponds
to the resolution of the differential equation associated to Dg. This led to a logic D-DiLL, where
d and d have the same effect but with a LPDOcc D instead of Dy, and where the exponential
connectives are indexed by this operator D. We change the logic D-DiLL into a logic IDiLL, which
is much closer to what is done in the graded setting. In this new framework, we will consider
the composition of two LPDOcc as our monoidal operation. We describe the exponential rules
of IDILL in Figure 2.

The indexed rules dp and dp are generalized to rules d; and d; involving a variety of
LPDOcc, while rules d and d are ignored for now. The interpretations of ?pA and !pA, and
hence the typing of d; and d are changed from what D-DiLL would have directly enforced (see
remark 3.2). Our new interpretations for 7pA and !|pA are now compatible with the intuition
that in graded logics, rules are supposed to add information.

[?pA] :={g | 3f € [?4], D(g) = f} ['pA] = ([?pA*]) = D(['A])

d[: [[?DIA]] — [[?DlngA]] 81 : [['DIAH — H!DlngA]]

Remark 3.2. Our definition for indexed connectives and thus for the types of dp and dp differs
from the original one in D-DiLL [9]. Kerjean gave typesdp : ?p qqE' — 7E’ and dp : 'Dotdl —
lE. However, graded linear logic carries different intuitions: indices are here to keep track of
the operations made through the inference rules. As such, dp and dp should introduce indices
D and not delete it. Compared with work in [9], we then change the interpretation of TpA and
IpA, and the types of dp and dp. Thanks to this change, we will see D-DiLL as a particular
case of DBgLL.

Theorem 3.3. The set D of LPDOcc is an additive splitting monoid under composition, with
the identity operator id as the identity element.

Then, D induces a logic DBpLL. In this logic, since the order of the monoid is defined
through the composition rule, for Dy and Ds in D we have

D1 < Dy<=3dD3€ D, Dy=D;0Dg3

From these results, we deduce the following theorem which expresses that both syntactical and
semantical differentiations, based either on BgLL or DilLL, lead to the same logic.

Theorem 3.4. Fach rule of IDILL is admissible in DBpLL, and each rule of DBpLL except d
and d is admissible in IDILL.

A concrete semantics for IDIiLL Since we have changed the rules of D-DiLL to be closer
to the graded point of view, the semantics of D-DiLL has to be modify while trying to define a
semantics of IDiLL. The exponential types will be interpreted as follows.

['pA] := ({f € C*([A],R) | 3¢ € C*([A],R), D(f) = g})' = D([!A])
[?pA] := {f € C([A]',R) | 3g € C*([A]',R), D(f) = g} = D~'([?A]) (1)

From this interpretation of the types, we can define an interpretation for each exponential rule.

Definition 3.5. We define the interpretation of each exponential rule of IDILL by:

R—>?z‘dE _ R — !idE
: W
1 esty 1= dg
. ?D1E®?D2E_>?D10D2E < !D1E® !DQE_>!D10D2E
f®g = ®piop, * (D1(f)-Da2(g)) YR Pxg
dI: ?DIE—)?DIODQE aI: !DIE—)!DIODQE
[®p,*f Y 1po Dy

Proposition 3.6. Each morphism w,w,c,c,d; and d; is well-typed, and compatible with the
cut elimination procedure.

4 Conclusion

We have defined a multi-operator version to D-DiLL, which turns out to be the finitary differ-
ential version of Graded Linear Logic. We describe the cut-elimination procedure and give a
denotational model of this calculus in terms of differential operators. This provides a new and

unexpected semantics for Graded Linear Logic, and tighten the links between Linear Logic and
Functional Analysis.

There are several directions to explore now that the proof theory of DBsLL has been estab-
lished. The obvious missing piece in our work is the categorical axiomatization of our model. In
a version with promotion, that would consist in a differential version of bounded linear exponen-
tials [2]. A first study based on with differential categories was recently done by Pacaud-Lemay
and Vienney [10]. Beware that our logic does not yet extend to higher-order and that without
a concrete higher-model it might be difficult to design elegant categorical axioms.

Another line of research would consist in introducing more complex differential operators
as indices of exponential connectives. Equations involving LPDOcc are extremely simple to
manipulate as they are solved in a one step computation (by applying a convolution product
with their fundamental solution). The vast majority of differential equations are difficult if not
impossible to solve. One could introduce fixpoint operators within the theory of DBgLL, to try
and modelize the resolution of differential equation by fixed point.

References

[1] Rick Blute, Thomas Ehrhard, and Christne Tasson. A convenient differential category. Les
cahiers de topologie et de géométrie différentielle catégorique, 2012.

[2] Alois Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative
coeffect calculus. In Programming Languages and Systems. Springer Berlin Heidelberg,
2014.

[3] Thomas Ehrhard and Antonio Bucciarelli. On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic, 109(3), 2001.

[4] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theoretical Computer
Science, 364(2), 2006.

[5] Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo
Uustalu. Combining effects and coeffects via grading. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, International Conference
on Functional Programming, ICFP. Association for Computing Machinery, 2016.

[6] Dan Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In Programming
Languages and Systems,, European Symposium on Programming, (ESOP). Springer Berlin
Heidelberg, 2014.

[7] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.

[8] Jean-Yves Girard, Andre Scedrov, and Philip Scott. Bounded linear logic. Theoretical
Computer Science, 9, 08 1991.

[9] Marie Kerjean. A logical account for linear partial differential equations. In Logic in
Computer Science (LICS), Proceedings. Association for Computing Machinery, 2018.

[10] Jean-Simon Pacaud Lemay and Jean-Baptiste Vienney. Graded differential categories and
graded differential linear logic, 2023. preprint.

[11] Paul-André Mellies. Parametric monads and enriched adjunctions, 2012. preprint.

