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In recent years, more and more interest in the programming language community has been directed
towards the study of quantitative properties of programs like computing the number of computation steps
or convergence probabilities, as opposed to purely qualitative properties like termination or program
equivalence. In particular, two different quantitative approaches have received considerable attention
from the programming language community. On the one hand, the approach of program metrics [2,3,30]
and quantitative equational theories [25] is based on the observation that probabilistic or numerical
algorithms are not thought to compute a target function f exactly, but only in an approximate way. This
led to study denotational frameworks in which types are endowed with metrics measuring similarities
in program behavior [30], [4], [9, 15, 29]. On the other hand, there is the approach based on differential
[13], [13], [1, 7, 19] or resource-aware [6] extensions of the λ -calculus, which is well-connected to
the relational semantics [12, 19, 23] and non-idempotent intersection types [10, 26]. This led to study
syntactic or denotational frameworks in which one can define a Taylor expansion of programs.

In both approaches a crucial role is played by the notion of linearity, in the sense of linear logic, i.e. of
using inputs exactly once. In metric semantics, linear programs correspond to non-expansive functions,
i.e. maps that do not increase distances; moreover, the possibility of duplicating inputs leads to interpret
programs with a fixed duplication bound as Lipschitz-continuous maps [2]. By contrast, in the standard
semantics of the differential λ -calculus, linear programs correspond to linear maps, in the usual algebraic
sense, while the possibility of duplicating inputs gives rise to power series.

The starting observation of this work is that, at a first glance, there seems to be a “logarithmic” gap
between the two approaches: in metric models n times duplication results in a n-Lipschitz linear function
n ·x, while in differential models this results in a non-Lipschitz polynomial function xn. At the same time,
this gap may be overcome once we interpret these functions in the framework of tropical mathematics
where, for instance, xn precisely reads as n · x.

Tropical mathematics [31] is a well established algebraic and geometrical framework, with tight
connections with optimisation theory [22], where the usual ring structure of numbers based on addition
and multiplication is replaced by the semiring structure given, respectively, by “min” and “+”. For
instance, the polynomial p(x,y) = x2 + xy2 + y3, when interpreted over the tropical semiring, translates
as the piecewise linear function t f (x,y) = min{2x,x+2y,3y}.

A tropical variant of relational semantics has already been considered [19], and shown capable of cap-
turing best-case quantitative properties. Connections between tropical linear algebra and metric spaces
have also been observed [14] within the abstract setting of quantale-enriched categories [17, 33].

However, a thorough investigation of the full power of the interpretation of the λ -calculus within
tropical mathematics has not yet been undertaken. We sketch here some first steps. The aim is to bride
the two approaches mentioned above by making them coexist, and suggesting the application of tropical
methods to the study of the λ -calculus and its quantitative extensions. This also scales to a more abstract
level, leading to introduce a differential operator for continuous functors between generalized metric
spaces (in the sense of [20]).
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1 The Tropical Semantics of Linear Logic

Tropical mathematics in a nutshell We let the tropical semiring L, the structure at the heart of tropical
mathematics, be [0,∞] with addition min and multiplication +. This coincides with the Lawvere quantale
L [17, 33], i.e. [0,∞] with order ≥ and usual + as the monoid action. L is at the heart of the categorical
study of metric spaces initiated by Lawvere [20], a viewpoint we will take in the last section. A tropical
polynomial is a piece-wise linear function ϕ : L→ L of the form ϕ(x) = min j=1,...,k{i jx+ ϕ̂i j}, with i j ∈
N, ϕ̂i j ∈ L and k finite. Those are always Lipschitz functions. For example, ϕn(x) = mini≤n{ix+ 2−i},
plotted in Fig 1. A tropical root of ϕ is a point x ∈ L where the minimum defining ϕ is attained at
least twice. E.g., the tropical roots of ϕn+1 are of the form 2−(i+1), i ≤ n. A tropical Laurent series (of
one variable x ∈ L), shortly a tLs, is a function ϕ : L→ L of the form ϕ(x) = infn∈N{nx+ ϕ̂n}, with
ϕ̂n ∈ L. That is, a tLs is a “limit” of tropical polynomials of higher and higher degree. For example
ϕ(x) := infi∈N{ix + 2−i} is the “limit” of the ϕn, see Fig 1. Finally, for a polynomial/power series
f (x) = ∑n anxn, one defines its tropicalization t f (α) := infn{− logan + nα}. TLs are in general not
Lipschitz, and their study is less developed than that of tropical polynomials.

Tropical weighted relational semantics in a nutshell The study of matrices with values over the
tropical semiring is a special case of the weighted relational semantics [19], a well-studied semantics of
the λ -calculus and linear logic: for a fixed continuous semi-ring Q, take the category QRel whose objects
are sets and QRel(X ,Y ) = QX×Y (set-indexed matrices with coefficients in Q). As expected, QX is a Q-
module and we can identify QRel(X ,Y ) with the set of linear maps from QX to QY . Taking Q := L we
obtain the tropical weighted relational model LRel. Remark that the composition in LRel reads as (s◦
t)a,c := infb∈Y{sb,c+ ta,b}; similarly, linear maps f : LX →LY are of shape f (x)b = infa∈X{xa+ f̂a,b}, for
some matrix f̂ ∈QX×Y and are precisely those induced by f̂ ∈ LRel(X ,Y ). We call them tropical linear.
By applying known results (taken from [19], [18], [21]), one obtains that LRel gives rise to denotational
models of several variants of the simply typed λ -calculus (STLC): first, LRel is a SMCC, i.e. a model of
the linear STLC. Also, the coKleisli LRel! is CCC, i.e. a model of STLC, where ! is the usual multiset
comonad (so !X is the set of finite multisets on X). Here, the coKleisli composition of s ∈ L!Y×Z and t ∈
L!X×Y is the matrix s◦! t ∈ L!X×Z given by (s◦! t)µ,c := inf

n∈N,b1...,bn∈Y,µ=µ1+···+µn

{
s[b1,...,bn],c +∑

n
i=1 tµi,bi

}
.

As usual, a matrix t ∈ LRel!(X ,Y ) yields a linear map L!X → LY . However, we can also “express it in
the base X” and see it as a non-linear map t! : LX → LY , by setting t!(x) := t ◦! x. Concretely, we have
t!(x)b = infµ∈!X{µx+ tµ,b} where µx := ∑a∈X µ(a)xa. These functions correspond then to generalised
tLs, i.e. with possibly infinitely many variables (as many as the elements of X) and for X =Y = {∗}, we
get usual tLs of one variable. Instead, if the support {µ ∈!X | f̂µ,b 6= ∞} of f is finite, we get tropical
polynomials in possibly infinitely many variables. Furthermore, ! can be decomposed into a family
of graded exponentials (!n)n∈N turning (LRel,(!n)n∈N) in a model for a simply typed λ -calculus with
bounded duplications, on the style of [8], call it bSTLC.

Finally, LRel! can be equipped with a differential operator D : LRel(!X ,Y )→ LRel(!(X +X),Y )
defined by: (Dt)µ⊕ρ,b := tρ+µ,b if #µ = 1 and := ∞ otherwise. This turns (LRel!,D) into a CC∂C, i.e.
a model of the differential λ -calculus. Remember that the (qualitative) Taylor expansion of an ordinary
λ -term M is an inductively defined series T (M) of differential λ -terms, the only non-trivial case being
T (PQ) := ∑

∞
k=0(D

k[P] ·Qk)0. It can be seen that the morphisms of LRel! can always be Taylor ex-
panded, and the series interpreting in LRel! the Taylor expansion of a STLC-term M, converges to the
interpretation of M.
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2 Tropical Laurent Series and Metric Semantics for STLC

The main goal of this section is to show that the interpretation of the above mentioned variants of the
STLC in the tropical relational model yields a metric semantics, where the spaces LX are endowed with
the ‖ · ‖∞-norm metric, and programs are interpreted as locally Lipschitz maps:

Theorem 1. For any λ -term M:
1. if Γ `bSTLC M : A, then JMK! : JΓK→ JAK is a Lipschitz map.
2. if Γ `STLC M : A, then JMK! : JΓK→ JAK is a locally Lipschitz map.

Moreover, the Taylor expansion T (M) decomposes JMK! into an inf of Lipschitz maps.

Recall that the syntactic Taylor expansion decomposes an unbounded application as a limit of bounded
ones; the result above lifts this decomposition to a semantic level, presenting a higher-order program as
limits of Lipschitz maps: it provides thus a bridge between the metric and the differential approaches.

The proof of the result above requires the study of tLs from the point of view of mathematical
analysis. We first studied tLs with respect to the topology induced by the ‖ · ‖∞-norm.

Proposition 2. Any tLs f : LX → LY is non-decreasing and concave, w.r.t. the pointwise order, and
continuous w.r.t. the norm ‖ · ‖∞.

Let us now consider metric properties. First, it can be seen that all tropical linear functions f : LX →
LY are non-expansive. This result shows that, in analogy with that happens in usual metric semantics,
linear programs are interpreted by non-expansive functions. More generally, linear maps with bounded
exponentials yield Lipschitz maps:

Proposition 3. If a tLs f : LX → LY arises from a matrix f̂ :!nX×Y → L, then f is a n-Lipschitz map.

This result is perfectly analogous to what happens in the metric models recalled in the introduction.
It also entails that any tropical polynomial ϕ : LX → L is deg(ϕ)-Lipschitz.
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Figure 1: Plot of the tropical
polynomials ϕ1,ϕ2,ϕ3,ϕ4 (from
top to bottom), and of their limit
tLs ϕ (in violet).

Let us now first consider the interesting case of tLs with finitely
many variables. Let us start by an example, shown in Fig 1: the
1-variable tLs ϕ(x) = infi{x + 2−i} behaves locally like the polyno-
mials ϕn(x) = mini≤n{x + 2−i}. However, at x = 0 we have that
ϕ(0) = infi∈N 2−i = 0, and this is the only point where the inf is not
a min. Also, while the derivative of ϕ is bounded on all R>0, at x = 0
it tends to ∞. This phenomenon is reminiscent of [11, Example 7]. In
fact, these properties are shared by all tLs with finitely many variables,
as shown by the following result (we identify !{1, . . . ,k} with Nk, so
the matrix of a tLs f with variables x = x1, . . . ,xk can be given as a
f̂ : Nk → L, and f has shape f (x) = infn∈Nk{nx+ f̂ (n)}, where nx is
the scalar product).

Theorem 4. Let k ∈ N and f : Lk → L a tLs with matrix f̂ : Nk → L.
For all 0 < ε < ∞, there is a finite Fε ⊆ Nk such that f coincides on
all [ε,∞]k with the tropical polynomial Pε(x) := minn∈Fε

{nx+ f̂ (n)}.
The result above suggests that, far from 0, the behavior of tLs with finitely many variables can

be studied with the tools of tropical geometry (e.g. tropical roots, Newton polygones). Moreover, a
consequence of Theorem 4 is that all tLs with finitely many variables are always locally Lipschitz on R>0.
The following result extends this property to all tLs, including the case with infinitely many variables.

Theorem 5. All tLs LX → L are locally Lipschitz on RX
>0.
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The core of the proof is a simple convex analysis argument showing that an arbitrary function f :
LX → L which is non-decreasing, concave and continuous, must be locally Lipschitz.

Finally, let us look at the differential operator D of LRel!. It translates into a differential operator
D! turing a tLs f : LX → LY into a tLs D! f : LX ×LX → LY , linear in its first variable, and given
by D! f (x,y)b = infa∈X ,µ∈!X

{
f̂µ+a + xa +µy

}
. One can check that, when f is a tropical polynomial,

D! f gives the standard tropical derivative (see e.g. [16]). Finally, the Taylor formula enjoyed by LRel!
morphisms, yields a “tropical” Taylor formula for tLs of the form f (x) = infn

{
D(n)

! ( f )(!nx,∞)
}

.

3 Tropical Semantics and Quantitative Properties: Likelihoods of Reduc-
tion Paths

Since algebraic and geometric properties in tropical mathematics are usually more tractable from a com-
putational point of view, in several well-known applications (e.g. for optimization problems related to
machine learning [24, 28, 34]) one starts from a given modelled phenomenon, typically expressed by
some polynomial function f , and studies which of its properties can be deduced from the tropicalization
t f of f . This idea suggests several natural directions in which the tropical semantics of a higher-order
programs could be used to deduce properties which can be expressed as an optimization problem.We
sketch here only one example, regarding probabilities, but we are currently working on other directions
including differential privacy and best case analysis.

As a toy example, consider a probabilistic extension STLC⊕ of STLC, with a new ground type Bool,
terms True,False of type Bool, terms of shape M⊕p N and pM, for p ∈ [0,1], typed via the usual rules.
We add reduction rules: M⊕p N → pM and M⊕p N → (1− p)N, so that M⊕p N plays the role of a
probabilistic coin toss of bias p. STLC⊕ can be seen as a fragment of the PCF in [19].

Consider now the following term M := (True⊕p False)⊕p ((True⊕p False)⊕p (False⊕p True)) of
type Bool. Let us give addresses ω ∈ {00,01,100,101,110,111} to the occurrences of True,False in M,
reading 0 as “left” and 1 as “right” in the tree structure of M. Calling q := 1− p, there are the follow-
ing six normal terms reachable from M: P00(p,q)True, P100(p,q)True, P111(p,q)True, P01(p,q)False,
P110(p,q)False, P101(p,q)False, where the P’s are the following monomials in p,q: P00(p,q) := p2,
P100(p,q) := qp2, P111(p,q) := q3, P01(p,q) := pq, P110(p,q) = P101(p,q) := q2 p. They correspond to
the respective reduction path from M to the normal term of the given address. Pω is then the probability
(as a function of p,q) of obtaining the respective occurrence Trueω or Falseω ,i.e. the likelihood function
of the reduction given by ω . The polynomial Q1(p,q) := P00(p,q)+P100(p,q)+P111(p,q) gives instead
the whole probability of obtaining True after all the tossings (similarly a Q0(p,q) for False). This way,
the probabilistic evaluation of M is presented as a hidden Markov model [5], a fundamental statistical
model, and notably one to which tropical methods are generally applied [28]. A typical question in this
case would be: knowing that M produced True, which is the choice of the parameters p,q that maxi-
mizes the probability that among the paths leading to True, the one taken was a fixed ω0? Answering
it, amounts at solving an optimisation problem related to Pω ,Qω , which is more easily solved via the
tropicalizations tPω , tQω . We are looking for p,q ∈ [0,1] s.t. q = 1− p and maxω∈{00,100,111} Pω(x,y) =
Pω0(x,y). This last condition is equivalent to ask that min

ω∈{00,100,111}
− logPω(x,y) = − logPω0(x,y), i.e.

(tQ1)(− logx,− logy) = (tPω0)(− logx,− logy).

Remark 1. By adapting [19, Section IV], it can be seen that LRel! is a model of STLC⊕. In particular,
if we set JBoolK := {0,1}, our running example M is interpreted as JMK ∈ L{0,1} giving the following
tropicalised probabilities: JMK0 = (tQ0)(p,1− p), JMK1 = (tQ1)(p,1− p).
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For our M, we have tQ1(x,y) = min{2x,y+ 2x,3y} and tQ0(x,y) = min{x+ y,2y+ x}. Studying
tQ1, we see that tQ1(x,y) = 3y iff y ≤ 2

3 x, and it coincides with 2x otherwise. Remembering that 3y =
P111(x,y), we can now solve our optimisation problem above for ω0 = 111: via the substitution x :=
− log p, y :=− log(1− p), it is equivalent to − log(1− p)≤−2

3 log p, i.e. 1− p≥ p
2
3 . This means that,

for p ∈ [0,1] s.t. 1− p≥ p
2
3 (for example, p = 1

4 ), the most likely occurrence of True to obtain, knowing
that M sampled True in its normal form, is True111. Remembering that 2x = P00(x,y), for the other values
of p (for example, p = 1

2 ), the most likely True to be sampled is the occurrence True00. We have thus
answered our question. Also, the p ∈ [0,1] s.t. (p,1− p) is a root of tQ1 or of tQ0, provide the values of
the bias of ⊕p for which there are at least two different equiprobable paths from M to its normal form.
Yet, we do not have a full understanding of the role of roots in this setting.

4 Getting rid of bases: L-modules as generalized metric spaces

As we have seen, tropical semantics provides a viewpoint in which metric and differential properties
coexist. This approach can be made more abstract, thanks to a fundamental categorical correspondence
between tropical linear algebra (i.e. the study of quantale modules over L) and the theory of Lawvere’s
generalized metric spaces (see [14, 32]).

A quantale module over L, shortly a L-module, is a triple (M,�,?) where (M,�) is a sup-lattice, and
? : L×M→M is a continuous (left-)action of L on it, where continuous means that ? commutes with
both joins in L and in M. The most basic examples of L-modules are given by the spaces LX , with order
and action defined pointwise. We see them as modules given together with a fixed base, X . Theorem 6
says that one can actually give a semantic of high order programs without need to fix a base.

We already remarked that the tropical semiring coincides with the Lawvere quantale L. In particular,
Lawvere was the first to observe that a (possibly ∞) metric on a set X is nothing but a “L-valued square
matrix” d : X ×X → L satisfying axioms like e.g. the triangular law. Indeed, such distance matrices
correspond to L-enriched categories (in short, a L-category) [17, 20, 33]. Many topological properties
of metric spaces translate in this way into purely categorical ones. In particular, L-enriched categories
which are cocomplete in the (enriched) categorical sense (i.e. all weighted colimits exist) satisfy usual
metric completeness properties (e.g. Cauchy-completeness or Isbell-completeness).

Now, any L-module M can be endowed with a metric M(x,y) = inf{ε | ε ? x ≥ y}, yielding a co-
complete L-enriched category and, conversely, any cocomplete L-enriched category X has a L-module
structure with order x ≤ y when X(y,x) = 0, and monoidal operation defined via a suitable weighted
colimit. This induces an isomorphism between the SMCC LMod of L-modules and their homomor-
phisms and the SMCC LCCat of cocomplete L-enriched categories and cocontinuous functors (notice
that functoriality in LCCat is just non-expansiveness).

At this point, it can be shown that the SMCC structure of LRel lifts in a natural way to that of the
more general category LMod'LCCat; secondly, an exponential ! in LMod'LCCat, can be defined via
a well-known recipe based on the construction of symmetric algebras [18,19,27] . Since ! makes LCCat
a Lafont category, one can either do a few calculations or apply general theorems from the literature
(e.g. [21]) to obtain the following result, which lifts also the exponential and differential structure of
LRel! to this more general setting:

Theorem 6. LMod! or, equivalently, LCCat!, can be equipped with a differential D making it a CC∂C.
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