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Abstract

We present some advances in the study of injectivity of the coherent multiset-based model for the proof-
nets of multiplicative and exponential linear logic whose switching graphs are all acyclic and connected.

Context

The general idea of denotational semantics is to give a mathematical counterpart to a rewriting system. Every
term t of the syntax is mapped to some mathematical object JtK, thus defining a function J·K, called seman-
tics or interpretation. The fundamental property that a semantics must satisfy is invariance under the rewrite
rules: if t reduces to t′, then JtK = Jt′K. This invariance entails the inclusion of the syntactic equivalence relation
on terms, which identifies terms that can be transformed one into the other by applying some rewrite rules, in
the semantic equivalence, which equates terms with the same interpretation. We say that the interpretation is
injective if this inclusion is an equality.

In the second part of the last century, with the discovery of the Curry-Howard correspondence, the study of
these equivalence relations, historically at the heart of theoretical computer science, became relevant in proof
theory: a proof can be seen as a program and execution corresponds to cut-elimination. In the framework of
linear logic [Gir87], the question of injectivity was addressed in [TdF03] and turned out to be quite complex:
contrary to what happens in the simply typed λ-calculus where any model (satisfying “typical ambiguity”, see
[Jol00]) is injective, there are semantics of linear logic (satisfying typical ambiguity) that are not injective. For
instance, while in [Car15] it was proven that the relational model is injective for multiplicative and exponential
linear logic (MELL), this is not the case for the coherent model, as counterexamples were exhibited in [TdF03].

The question of injectivity is also a way to determine whether or not two proofs are to be considered equal,
which is the traditional proof-theoretical problem of the identity of proofs. With linear logic the notion of proof-
net, a new formalism for proofs, is born. It allows to capture more faithfully the essence of a proof since it iden-
tifies proofs which, in Gentzen’s sequent calculus, are morally the same: for instance, proofs that only differ in
the order in which some rules are applied. To study the question of injectivity is then a way to “measure” the
quality of the representation of proofs as proof-nets and to wonder if it is possible to make “more identifications”
than proof-nets.
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Introduction

We resume the work on the injectivity of the coherent multiset-based semantics which started in [TdF03] with
the first positive and negative results. While it was shown that injectivity fails when considering all proof-nets
of MELL, it was also conjectured that injectivity holds for connected proof-nets, that is proof-nets such that all
their switching graphs are acyclic and connected.1 In the same paper, a sufficient condition to achieve this re-
sult was determined: the existence of an injective experiment for every connected proof-net which only consists
of axioms, tensors, derelictions and contractions. Still in [TdF03], it was shown that this sufficient condition
holds with the restriction that every contraction is terminal.

We recently managed to establish the result with the restriction that every contraction is atomic, meaning
that the types of its premises are atomic formulas. More precisely, given an injective “relational” experiment,
we are able to define a partial coherence relation in such a way that the labels of the premises of any atomic
contraction are incoherent and, for every non-atomic contraction, the coherence relation between the labels of
its premises is either incoherence or undefined.

1 Proof-nets and experiments

Our logical framework is a particular subsystem of cut-free MELL proof-nets without weakenings. Formulas are
generated by the following grammar, where X denotes any atomic formula:

A ::= X | X⊥ | A⊗A | ?A

In this setting, we provide the definitions of proof-structure, proof-net and connected proof-net.

Definition 1.1. A proof-structure is a labelled directed graph R, with labels of the nodes in {ax ,⊗, ?, •} and
such that:

◦ Every arc of R is called a premise of its head and a conclusion of its tail;

◦ Every node of R labelled by ax is called an axiom, has no premises and exactly two conclusions, labelled
by dual atomic formulas;

◦ Every node of R labelled by ⊗ is called a tensor, has exactly one conclusion, labelled by a formula A⊗B,
and has exactly two premises, one of which is called its left premise, is labelled by A and by the integer 1,
whereas the other is called its right premise, is labelled by B and by the integer 2;

◦ Every node of R labelled by ? is called a why not, has exactly one conclusion, labelled by a formula ?A,
and has at least one premise. Such a node has all of its premises labelled by A and is called a dereliction if
it has exactly one premise, a contraction otherwise;

◦ Every node ofR labelled by • is called a conclusion and possesses exactly one premise and no conclusions.

Moreover, a proof-structure is equipped with a total order of its conclusions: if c1, . . . , ck are the conclusions of
R, then k ≥ 1 and the premise of ci is labelled by the integer i for all i ∈ {1, . . . , k}. The type of an arc a of R is
the formula labelling a. A switching of R is a function φ mapping every contraction of R to one of its premises.
A switching graph of R induced by φ is a proof-structure obtained from R by replacing a with an arc having
the same tail as a and a fresh conclusion as head, for every premise a of a contraction node c of R such that
φ(c) ̸= a. Finally, we say that R is a proof-net when the underlying undirected graph of every switching graph
of R is acyclic, a connected proof-net if such graphs are also connected.

1The proof structure associated with any MELL sequent calculus proof without weakenings is a connected proof-net.
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We now turn our attention from syntax to semantics, by recalling the notion of experiment. We assume that
an interpretation of atomic formulas by coherent spaces, that is a function associating a coherent space X with
any atomic formula X, is given. It is well known that one can extend such an interpretation to all formulas.

Notation 1.1. If α is a conclusion of an axiom n of a proof-structure, we denote α⊥ the other conclusion of n.

Definition 1.2. Let R be a proof-structure. An experiment of R is a map e which associates with every arc of
typeA ofR an element of the web of the coherent space associated withA and satisfies the following conditions:

◦ If α is a conclusion of an axiom of R, then e(α) = e(α⊥);

◦ If a is the conclusion of a tensor of R with left premise b and right premise c, then e(a) = (e(b), e(c));

◦ If a is the conclusion of a why not of R with premises b1, . . . , bk, then e(a) = {e(b1), . . . , e(bk)}.

We say that e is injective if e(α1) ̸= e(α2) for all distinct arcs α1, α2 of R of the same atomic type.

Remark 1.1. Recall that, if B is a coherent space, an element of the web of ?B is a finite multiset of elements of
the web of B which are pairwise incoherent. Therefore, the definition of experiment implicitly requires that, if
b1, . . . , bk are the premises of a contraction of R, then e(bi) ˚ e(bj) for all i, j ∈ {1, . . . , k}. Hence, the existence
of an injective experiment is not trivial. In addition, if e is injective, then e(a) ̸= e(a′) for any two distinct arcs
a, a′ of the same type and the previous condition becomes e(bi) ˇ e(bj) for all i, j ∈ {1, . . . , k} with i ̸= j.

In the paper [TdF03] it is proven that, if there exists an injective experiment for every connected proof-net,
then the coherent multiset-based semantics is injective for connected MELL proof-nets.

Conjecture. If R is a connected proof-net, then there exists an injective experiment of R.

Remark 1.2. IfR is a proof-net that is not connected then, in general, there exists no injective experiment. This
suggested the counterexamples in [TdF03] not only to the existence of an injective experiment, but also to the
injectivity of the coherent multiset-based semantics for all MELL proof-nets.

The intuitive idea behind our work towards a proof of the previous conjecture is the following. If we ignore
the coherence constraints, then a “relational” injective experiment always exists, because Remark 1.1 does not
apply. Then we can start with no coherence relations at all and add them little by little, making sure that we are
really making progress, meaning that we are not inducing coherence on two premises of any contraction. This
motivates the definition of pre-experiment as a partial function, which will be our main tool in the next section.

2 The case of atomic contractions

Notation 2.1. If R is a proof-structure, we call PR the set of unordered pairs {a, a′} such that a, a′ are distinct
arcs of R of the same type and P at

R the set of those elements {α, α′} ∈ PR such that the type of α, α′ is atomic.

Definition 2.1. If R is a proof-structure, a pre-experiment of R is a partial function e : P at
R → {˝,ˇ}, where

˝ and ˇ are just two formal symbols, such that, for all {α, α′} ∈ P at
R , if e({α, α′}) is defined, then e({α⊥, α′⊥})

is also defined and e({α, α′}) ̸= e({α⊥, α′⊥}). In addition, the pre-experiment e uniquely extends to a partial
function ē : PR → {˝,ˇ}, which is defined by induction on the type A of the arcs a, a′ of a pair {a, a′} ∈ PR:

◦ If A is an atomic type, then ē({a, a′}) = e({a, a′});

◦ If A = B ⊗ C for some types B and C, then a, a′ must be conclusions of two tensor nodes of R having left
premises b, b′ and right premises c, c′ respectively. We define:

ē({a, a′}) =

{˝ if ē({b, b′}) = ē({c, c′}) = ˝
ˇ if ē({b, b′}) = ˇ or ē({c, c′}) = ˇ

If neither of the conditions on the right holds, then the partial function ē is undefined on the pair {a, a′};
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◦ If A = ?B for some type B, then a, a′ must be conclusions of why not nodes of R with premises b1, . . . , bk
and b′1, . . . , b

′
k′ respectively, for some strictly positive integers k and k′. We define:

ē({a, a′}) =

{˝ if ∃ i ∈ {1, . . . , k}, i′ ∈ {1, . . . , k′} : ē({bi, b′i′}) = ˝
ˇ if ∀ i ∈ {1, . . . , k}, i′ ∈ {1, . . . , k′} : ē({bi, b′i′}) = ˇ

Again, if neither of the conditions on the right holds, the partial function ē is undefined on {a, a′}.

Notation 2.2. If e is a pre-experiment of a proof-structure R and {a, a′} ∈ PR, we can unambiguously denote
e(a, a′) the element ē({a, a′}).

The following definition introduces two key properties of pre-experiments: admissibility and atomicity. The
former is the requirement that any two premises of any contraction are not coherent, whereas the latter states
that two arcs of the same atomic type are incoherent if and only if they are premises of the same contraction.

Definition 2.2. A pre-experiment e of a proof-structure R is admissible if, for every two distinct premises a, a′

of the same contraction of R, we do not have e(a, a′) = ˝, meaning that e(a, a′) is either ˇ or undefined. We
say that e is atomic if, for every {α, α′} ∈ P at

R , we have e(α, α′) = ˇ if and only if α, α′ are premises of the same
contraction of R.

Remark 2.1. If e is an admissible pre-experiment of a proof-structure R and e is defined on each element of P at
R ,

then e is (essentially) an injective experiment of R.

Remark 2.2 (Connectedness is crucial). Let R be a proof-structure and let α, α′ be distinct arcs of R of atomic
type and premises of the same contraction of R. If α⊥, α′⊥ are premises of the same contraction of R, then R is
not a connected proof-net and no pre-experiment of R is atomic.

Lemma 2.1. Let R be a connected proof-net. Then there exists an atomic pre-experiment of R.

Proof. For every {α, α′} ∈ P at
R , if α, α′ are premises of the same contraction of R, then neither α⊥ nor α′⊥ is,

because R is a connected proof-net. We can thus define:

e(α, α′) =

{˝ if α⊥, α′⊥ are premises of the same contraction of R
ˇ if α, α′ are premises of the same contraction of R

As usual, if neither of the two conditions on the right holds, the partial function e is undefined on {α, α′}.

Remark 2.3. An immediate consequence of Lemma 2.1 is that, if R is a connected proof-net and every premise
of a contraction of R is a conclusion of an axiom of R, then there exists an injective experiment of R.

We now want to prove the existence of an atomic and admissible pre-experiment (Proposition 2.1), which is
a stronger result than the one expressed in Remark 2.3 and is relevant for the general case with no restrictions
on the position of contractions. First, we need some basic notions about proof-structures.

Definition 2.3 (Tree above an arc, address of an arc). Let R be a proof-structure. If a is an arc of R, we define
the distance of a from an axiom as the smallest non-negative integer h for which there exists a descent path2

a0 . . . ah of R such that a0 is a conclusion of an axiom of R and ah = a. The tree above a, denoted Ta, is defined
by induction on the distance d of a from an axiom:

◦ If d = 0, then the tree above a is the arc a in which the label of the head is replaced by •.

◦ Otherwise, the arc a is the conclusion of a tensor or why not node n of R with premises b1, . . . , bℓ. The tree
above a is produced by first identifying the head of bi in Tbi and the tail of a for all indices i ∈ {1, . . . , ℓ},
then replacing the labels of the tail and of the head of a with the label of n and • respectively.

2A descent path is a sequence of arcs a0 . . . ah such that the head of ai−1 is the tail of ai for all i ∈ {1, . . . , h}.
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Now let a0 . . . ah be the unique descent path of R such that a0 = a and ah is the premise of a conclusion of R.
The non-negative integer h is called the distance of a from a conclusion. Finally, suppose that k is the number
of conclusions of R. The address of a, denoted adr(a), is a finite word over the alphabet {1, . . . , k, L,C,R} and is
defined by induction on the distance d of a from a conclusion:

◦ If d = 0, then a is the premise of a conclusion of R and the address of a is just the integer labelling a in R;

◦ Otherwise, the arc a must be a premise of a node n with conclusion b.

⋄ If n is a tensor, we define adr(a) = adr(b)L if a is the left premise of n, otherwise adr(a) = adr(b)R;

⋄ Otherwise n is a why not and we define adr(a) = adr(b)C.

An address is atomic if it is the address of an arc of atomic type of R.

One easily sees that the notion of address is strictly stronger than the notion of type: two arcs with the same
address have the same type, but the converse does not hold in general. The idea is that addresses distinguish
the distinct occurrences of A in A⊗A.

Remark 2.4. If R is a proof-structure, then any two premises of a contraction of R have the same address by
definition. Conversely, if two distinct arcs b1, b2 ofR have the same address, then there are two distinct premises
a1, a2 of a contraction of R such that bi ∈ Tai

for each i ∈ {1, 2}.
Remark 2.5. If R is a proof-structure and a is an arc of R such that no contraction of R occurs in Ta, then any
two distinct arcs of Ta have different addresses.

Notation 2.3. Let R be a proof-structure, let a be an arc of R such that no contraction of R occurs in Ta and
let b be an arc of Ta with address w. Then b is denoted a[w], unambiguously thanks to Remark 2.5.

We can finally state the following key result.

Lemma 2.2. Let R be a connected proof-net and let e be an atomic pre-experiment of R. If a1, a2 are different
arcs of R of the same type with addresses w1, w2 respectively and such that e(a1, a2) = ˝, then:

(i) No contraction of R occurs in Tai for each i ∈ {1, 2};

(ii) For every v such thatw1v andw2v are atomic addresses, we have that a1[w1v]
⊥ and a2[w2v]

⊥ are premises
of the same contraction of R.

Proof. By induction on the distance of a1 from an axiom.

Proposition 2.1. If R is a connected proof-net, there exists an atomic and admissible pre-experiment of R.

Proof. By Lemma 2.1, there exists an atomic pre-experiment of R. By using Lemma 2.2, we will prove that any
atomic pre-experiment of R is admissible. We will do so by showing that, if there is an atomic pre-experiment e
ofRwhich is not admissible, thenR is not connected. By Definition 2.2, there exist two distinct premises a, a′ of
a contraction c of R such that e(a, a′) = ˝. Therefore, the two assertions of Lemma 2.2 apply. Now let w be the
address of a, a′ and let φ be any switching of R with φ(c) = a′ and φ(cv) ̸= a[wv]⊥ for every v such that wv is
an atomic address, where cv is the contraction of R having a[wv]⊥ and a′[wv]⊥ among its premises. Let Rφ be a
switching graph of R induced by φ. We claim that Rφ is not a connected graph. More precisely, there is no path
θ = a0 . . . ak of Rφ such that a0 = a and ak = a′. Indeed, let us suppose, for the sake of contradiction, that such
a θ exists. Since a ∈ Ta and a′ /∈ Ta, there exists i ∈ {1, . . . , k} such that ai is the first arc of θ which is not in Ta.
Since φ(c) = a′, it must be the case that ai−1 and ai are the conclusions of an axiom n of R. Let X be the type
of ai. We know that, if v is such that wv is the address of ai−1, then ai is a premise of cv and φ(cv) ̸= ai. Hence
i = k, meaning that a′ is a conclusion of n. In particular, since a, a′ are premises of the same contraction, they
have the same type, which has to be X. Therefore, we have k = 1. So a, a′ are both conclusions of n, which gives
the contradiction X = X⊥. We can conclude that Rφ is not connected, so R is not a connected proof-net.
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