Probabilistic logic programming with multiplicative modules

Roberto Maieli

maieli@uniroma3.it

TLLA 2021 - Rome, June 28, 2021
the quest of modularity

[...] all the problems concerning correctness and modularity of programs appeal in a deep way to the syntactic tradition, to proof theory.

[...] Heyting semantics is very original: it does not interpret the logical operations by themselves, but by abstract constructions. Now we can see that these constructions are nothing but typed i.e. modular programs.

Outline (this talk in 6 lines):

1. a **multiplicative module** is a "piece" of "multiplicative net" ⊆ MLL PNs;
2. the special case of **multiplicative bipoles** generalize Andreoli’s MLL bipoles (LP);
3. a **multiplicative module** is characterized by a **behavior** (a partitions set);
4. a **probability distribution function** is associated to each multiplicative module;
5. we deal with **non-determinism of processes** but no need for **additives** & , ⊕;
6. **correctness** of process transition is **LINEAR** (in the size of the behavior).
multiplicative module

Def: a **multiplicative module** μ is a triple $\langle I = \{i_1, ..., i_{n\geq0}\}, O = \{o_1, ..., o_{m\geq1}\}, B_\mu \rangle$

- I is a possibly empty set of input indexes,
- O is a non empty set of output indexes with $I \cap O = \emptyset$
- B_μ is a set of partitions (the **behavior** of μ) over the border $B = I \cup O$ s.t.:
 1. all partitions $P_1, ..., P_h, ..., P_l$ in B_μ have **same size** (number of classes/blocks)

 $P_1 = \{\alpha^1_1, ..., \alpha^1_z\}$

 \[\vdots \]

 $P_h = \{\alpha^j_1, ..., \alpha^j_z\}$

 \[\vdots \]

 $P_l = \{\alpha^l_1, ..., \alpha^l_z\}$

 2. \(\forall i_j, \forall o_k, \exists P_h \in B_\mu\) s.t. i_j and o_k **occur together in a class** α^h_t of P_h;

 3. the **orthogonal** $(B_\mu)^\perp$ of B_μ must be not empty.
ORTHOGONALITY

Def. Two modules μ, β are **orthogonal** iff their behaviors (partitions sets) B_μ, B_β are orthogonal, $B_\mu \perp B_\beta$, iff they are pointwise orthogonal:

$$\forall P \in B_\mu \text{ and } \forall Q \in B_\beta, P \perp Q$$

"Orthogonality" $P \perp Q$ is defined by a topological condition: the bipartite graph obtained by linking together classes/blocks of each partition sharing an element is acyclic and connected.

Example.

\{(1,2), (3)\} is **not** orthogonal to \{(1,2,3)\} see G_1

\{(1,2), (3)\} is both orthogonal to \{(1,3), (2)\} and \{(1), (2,3)\} see G_2, G_3

\begin{align*}
G_1 : & \quad [1,2] \quad [3] \\
& \quad \bullet \quad \bullet \quad \bullet
\end{align*}

\begin{align*}
G_2 : & \quad [1,2] \quad [3] \\
& \quad \bullet \quad \bullet \quad \bullet
\end{align*}

\begin{align*}
G_3 : & \quad [1,2] \quad [3] \\
& \quad \bullet \quad \bullet \quad \bullet
\end{align*}

\begin{align*}
G_1 : & \quad [1,2,3] \\
& \quad \bullet
\end{align*}

\begin{align*}
G_2 : & \quad [1,3] \quad [2] \\
& \quad \bullet \quad \bullet
\end{align*}

\begin{align*}
G_3 : & \quad [1] \quad [2,3] \\
& \quad \bullet \quad \bullet
\end{align*}
Def. A **multiplicative bipole** is a special case of multiplicative module

\[\beta : \langle I = \{i_1, ..., i_{n \geq 0}\}, O = \{o_1, ..., o_{m \geq 1}\}, \mathcal{B}_\beta \rangle \]

- with the condition that: for each partition \(P_h \) in \(\mathcal{B}_\beta \), all the elements of the output set \(O \) must belong to a single class (the **head class**) \(\alpha_h^t \) of \(P_h \).
- \(O \) is called the **head** of "method" \(\beta \): it plays the role of the "trigger" of \(\beta \);
- \(I \) is called the **body** of "method" \(\beta \).

![Diagram](image)

\[P_1 = \{ \alpha_1^1 = (...o_1, ..., o_m,...), ..., \alpha_2^1 \} \]

...

\[P_h = \{ \alpha_1^h, ..., \alpha_t^h = (...o_1, ..., o_m,...), ..., \alpha_z^h \} \]

...

\[P_I = \{ \alpha_1^l, ..., \alpha_z^l = (...o_1, ..., o_m,...) \} \]
orthogonality guarantees bipoles Expansion ∼ Resolution

Example given:

- module π with behavior \mathcal{B}_π over the border $I = \{0, 1, 2, 3, 4\} \cup O = \{0\}$;
- bipole β with behavior \mathcal{B}_β over the border $I = \{5, 6, 7\} \cup O = \{1, 4\}$,

$$
\mathcal{B}_\pi = \begin{cases}
 p_1 : (1) \ (0, 2, 3) \ (4) \\
 p_2 : (2) \ (0, 1, 3) \ (4) \\
 p_3 : (1) \ (2, 3) \ (0, 4) \\
 p_4 : (2) \ (1, 3) \ (0, 4)
\end{cases} \quad \quad \quad
\mathcal{B}_\beta = \begin{cases}
 q_1 : (6) \ (5, 7, 1, 4) \\
 q_2 : (5) \ (6, 7, 1, 4)
\end{cases}.
$$

- the head $H = O : \{1, 4\}$ of β is included in the body $I : \{1, 2, 3, 4\}$ of π;
- the restricted behaviors $(\mathcal{B}_\pi)\downarrow^H$ and $(\mathcal{B}_\beta)\downarrow^H$ are orthogonal, $\{(1, 4)\} \perp \{(1), (4)\}$;
- then, we can **expand** π by β and build the **multiplicative bipolar module/net** $\pi \circ \beta$:

$$
\mathcal{B}_{\pi \circ \beta} = \begin{cases}
 q_1.p_1 : (6) \ (5, 7) \ (0, 2, 3) \\
 q_2.p_1 : (5) \ (6, 7) \ (0, 2, 3) \\
 q_1.p_2 : (2) \ (6) \ (5, 7, 0, 3) := q_1.p_4 \\
 q_2.p_2 : (2) \ (5) \ (6, 7, 0, 3) := q_2.p_4 \\
 q_1.p_3 : (6) \ (5, 7, 0) \ (2, 3) \\
 q_2.p_3 : (5) \ (6, 7, 0) \ (2, 3).
\end{cases}
$$

Correctness of expansion is LINEAR in the size of the behavior of π.
Example 1. β is MLL definable/decomposable:

- border $I = \{a, b, c, d\}$, $O = \{h_1, h_2\}$
- behavior $B_\beta = \{((a, c, h_1, h_2), (b), (d)), ((a, d, h_1, h_2), (b), (c)),
 ((b, c, h_1, h_2), (a), (d)), ((b, d, h_1, h_2), (a), (c))\}.$

\[\exists\text{ a MLL proof structure } B \text{ (a bipole indeed) s.t. the behavior of } \beta \text{ corresponds to the set of partitions of the border of } B \text{ induced by all Danos-Regnier switchings: in a switching } S \text{ for } B, \text{ two points of the border stay in the same class iff they stay in a same connected component of } S.\]

\[\beta \text{ is a MLL bipole!}\]

Example 2. γ is MLL definable: it is an MLL monopole:

- border $I = \emptyset$, $O = \{h_1, \ldots, h_n\}$
- behavior $B_\beta = \{((h_1, \ldots, h_n))\}$ (a singleton)

\[\gamma \text{ is a MLL monopole!}\]
multiplicative bipolar net that are MLL definable

\[B_\pi = \begin{cases} p_1 : (1, 0, 2, 3) \\ p_2 : (2, 0, 1, 3) \\ p_3 : (1, 2, 3) \\ p_4 : (2, 1, 3) \end{cases}, \quad B_\beta = \begin{cases} q_1 : (6, 5, 7, 1, 4) \\ q_2 : (5, 6, 7, 1, 4) \end{cases}, \quad B_{\pi \circ \beta} = \begin{cases} q_1.p_1 : (6, 5, 7) \\ q_1.p_2 : (5, 6, 7) \\ q_2.p_1 : (2, 6) \\ q_2.p_2 : (5, 6, 7, 0) \end{cases}. \]

There are three equivalent ways to perform the bipolar proof construction in the MLL case:
- by sets (orthogonal behaviors i.e., partitions sets)
- by graphs (proof net expansion)
- by trees (sequent calculus expansion)

Theorem Given a set of MLL methods/bipoles \(U = \{ \beta_1, ..., \beta_n \} \) (LP) and a goal \(G \) (a multi-set of atoms \(\{ a_1, ..., a_m \} \)) then \(U \vdash_{\text{MLL foc}} G \) iff \(\exists \mu : \langle I : \{ i_1, ..., i_{n \geq 0} \}, O : \{ o_1, ..., o_{m \geq 1} \}, B_\mu \rangle \) s.t.:

1. \(O = \{ a_1, ..., a_m \} \) and
2. \(B_\mu \) is built by expanding \(\beta_1, ..., \beta_n \).
"primitive" multiplicative bipoles that are NOT MLL definable

\[\{ \text{MLL bipoles} \} \subsetneq \{ \text{multiplicative bipoles} \} \]

\(\gamma \) is NOT MLL definable.

\[B_\gamma = \{ \{ (i_1, o_1, o_2), (i_2, o_3, o_4) \}, \{ (i_1, o_2, o_3), (i_2, o_4, o_1) \} \} \]

\(\beta \) is NOT MLL definable.

\[B_\beta = \{ \{ (i_1, i_3, o_5, o_6), (i_2), (i_4) \}, \{ (i_2, i_4, o_5, o_6), (i_1), (i_3) \} \} \]

\(B_\gamma \perp B_\beta \):

\(B_\gamma \) restricted to \(O_\gamma = \{ o_1, o_2, o_3, o_4 \} \) and \(B_\beta \), restricted to \(I_\beta = \{ i_1, i_2, i_3, i_4 \} \) are orthogonal modulo the unification \(I_\beta \leftrightarrow O_\gamma: i_1 = o_1, i_2 = o_2, i_3 = o_3, i_4 = o_4 \).
the unfolding of "primitive" bipoles

\(\gamma \) can be interpreted as the **union** of the behaviors of two pairs of "concurrent" bipoles:

\[
B_\gamma = B_{\gamma_1} \cup B_{\gamma_2} \text{ with } \gamma_1 = \alpha_1 \otimes \alpha_2 \text{ and } \gamma_2 = \alpha_1' \otimes \alpha_2' \]

\[
B_\gamma = \{ \{(i_1, o_1, o_2), (i_2, o_3, o_4)\}, \\
\{(i_1, o_2, o_3), (i_2, o_4, o_1)\} \}
\]

\[
B_\gamma = \{ B_{\gamma_1} = \{\{(i_1, o_1, o_2), (i_2, o_3, o_4)\}\} \cup B_{\gamma_2} = \{\{(i_1, o_2, o_3), (i_2, o_4, o_1)\}\}\}
\]

We say that \(\gamma \) can be **unfolded** in to \(\{\gamma_1, \gamma_2\} \) called the **unfolding trace/family of** \(\gamma \).
the unfolding of "primitive" bipoles

Dually, β can be interpreted as the intersection of a pair of MLL bipoles, β_1 and β_2, with the same "skeleton" and whose input borders only differ by the cyclic permutation of the input sequence (i_1, i_2, i_3, i_4), that is:

$$B_\beta = B_{\beta_1} \cap B_{\beta_2}$$

We say that β can be unfolded in to $\{\beta_1, \beta_2\}$ called the unfolding trace/family of β.

Note this unfoldable module expresses a kind of non-deterministic super-position (\cap): only one of them or both simultaneously may partecipate to the net expansion.

Roberto Maieli (maieli@uniroma3.it)
Prob. Log. Programm. with multiplicative modules
TLLA 2021 - Rome, June 28, 2021 11 / 18
in **standard logic programming**, conditional probability values are assigned to method (MLL bipoles) and a-priori probability values are assigned to fact (MLL monopole):

\[H : \neg B_1, \ldots, B_n \quad p(H \mid \bigcap_i B_i) \quad \text{conditional probability} \]

\[H : \neg . \quad p(H) \quad \text{a-priori probability} \]

with **multiplicative unfoldable modules**, we assign a **probability distribution function** to a unfoldable bipolar module: this function describes all possible values and likelihoods that a random variable can take within a given range.
Let β be a **multiplicative unfoldable bipole**

with behavior B_β over the border $I = \{i_1, \ldots, i_n\} \uplus O = \{o_1, \ldots, o_m\}$;

Let β_1, \ldots, β_k be the **unfolding trace** (the unfolding family of MLL bipoles) of β.

We call a **probability distribution** for β a (finite) set of real number values,

$$P(O|I)_\beta = \{p(\beta_i) \mid 0 < p(\beta_i) \in \mathbb{R} \leq 1 \text{ and } \beta_i \text{ is in the trace of } \beta\}$$

with the condition that in case that $B_\beta = \bigcup_i B_{\beta_i}$ then, $\sum_{i=1}^{k} p(\beta_i) = 1$.

In particular, if β is a **MLL bipole** then, $P(O|I) = \{p(\beta)\}$ (a singleton):

- if β is a method with $I \neq \emptyset$ then $p(\beta)$ is the conditional probability $p(O|I)$,
- if β is a fact (i.e., $I = \emptyset$) then, $p(\beta)$ is an a-priori probability $p(O)$.
probability distribution of unfoldable bipoles

In case \(B_\beta = \bigcup_{i=1}^{k} B_{\beta_i} \) then \(P_\beta(O|I) = \{p(\gamma_1), p(\gamma_2)\} \) s.t. \(p(\gamma_1) + p(\gamma_2) = 1 \).

\(p(O|I) \) expresses the variation of probability over an aleatory variable \(O = \{o_1, o_2, o_3, o_4\} \):

\[
P(O|I) = \{p(\gamma_1), p(\gamma_2)\} \quad \text{s.t.} \quad p(\gamma_1) + p(\gamma_2) = 1.
\]

Example.

Assume for simplification reasons that \(I = \emptyset \) then, \(p(O) \) expresses the variation of probability over the aleatory "variable" \(O = \{o_1, o_2, o_3, o_4\} \):

- \(p(\gamma_1) \) denotes the a-priori probability \(p(E_1) \) of the event \(E_1 \):
 "resource \(o_1 \) occurs together with \(o_2 \) while resource \(o_3 \) occurs together with resource \(o_4 \);"

- \(p(\gamma_2) \) denotes the a-priori probability \(p(E_2) \) of the event \(E_2 \):
 "resource \(o_2 \) occurs together with resource \(o_3 \) while resources \(o_4 \) occurs together with \(o_1 \)."
probability distribution of unfoldable bipoles

otherwise, in case \(B_\beta = \bigcap_{i=1}^{k} B_{\beta_i} \) then \(P_\beta(O|I) = \{p(\gamma_1), p(\gamma_2)\} \) where every \(p(\beta_i) \) expresses a condition probability \(p(O|I) \)

\[
B_\beta = \{ (i_1, i_2, o_5, o_6), (i_2, i_4) \} = B_{\beta_1} : \{(i_1, i_3, o_5, o_6), (i_2, i_4)\}, \{(i_2, i_4, o_5, o_6), (i_1, i_3)\}, \{(i_1, i_4, o_5, o_6), (i_2, i_3)\}, \{(i_2, i_3, i_4, o_5, o_6), (i_1)\}, \{(i_3, i_2, i_4, o_5, o_6), (i_1)\}, \{(i_4, i_3, i_2, i_4, o_5, o_6), (i_1)\}, \{(i_4, i_3, i_2, o_5, o_6), (i_1)\}, \{(i_4, i_3, o_5, o_6), (i_1)\}, \{(i_4, o_5, o_6), (i_1)\}, \{(o_5, o_6), (i_1)\} \\
B_{\beta_2} : \{(i_1, i_3, o_5, o_6), (i_2, i_4)\}, \{(i_2, i_4, o_5, o_6), (i_1, i_3)\}, \{(i_1, i_4, o_5, o_6), (i_2, i_3)\}, \{(i_2, i_3, i_4, o_5, o_6), (i_1)\}, \{(i_3, i_2, i_4, o_5, o_6), (i_1)\}, \{(i_3, i_4, o_5, o_6), (i_1)\}, \{(i_3, o_5, o_6), (i_1)\}, \{(o_5, o_6), (i_1)\}
\]

Example.

- \(p(\beta_1) \) expresses the **conditional probability** \(p(E|E_1) \) that:

 "we observe the event \(E \), in which resource \(o_5 \) stays together with resource \(o_6 \), if occurs the event \(E_1 \) that resources \(i_1 \) stays together with \(i_2 \) while \(i_3 \) stays together \(i_4 \)";

- \(p(\beta_2) \) expresses the **conditional probability** \(p(E|E_2) \) that:

 "we observe the event \(E \), in which resource \(o_5 \) stays together with resource \(o_6 \), if occurs the event \(E_2 \) that resources \(i_2 \) stays together with \(i_3 \) while \(i_4 \) stays together with \(i_1 \)."
There are two directions of the information flow in our net construction model:

1. **net expansion** \uparrow: the first direction consists in the bottom-up construction of the net, by module expansions;

2. **info propagation** \downarrow: the second direction intervenes when the net construction is successfully completed; in that case, we can invert the direction of the information and propagate the probability information from the top (that is, the a-priori probabilities associated to the axiom-bipoles/facts) to the bottom.
Net unfolding and Naive Bayesian Classification

An example inspired to Naive Bayesian Classifier (used e.g. in Machine Learning):

Let us classify a new instance of the event $E = (o_5, o_6)$ according either to event E_1 or to E_2;

Assume the sub-net T_2 is the trained Naive Bayesian model.

Unfolding the trained model T_2 allows us to calculate the \textbf{a-posteriori probabilities} that:

"if event E occurs then, we could expect event E_1 (net T'_2) rather than event E_2 (net T''_2)"

\textbf{Bayes’ Theorem:} \hspace{1cm}

\[p(E_1|E) = \frac{p(E|E_1)p(E_1)}{p(E)} : T'_2, \hspace{0.5cm} p(E_2|E) = \frac{p(E|E_2)p(E_2)}{p(E)} : T''_2 \]

where:

$- p(E) = \sum_{i=1}^{2} p(E|E_i).p(E_i)$ is the \textbf{absolute probability} that event E will occur;

$- p(E|E_1).p(E_1) = p(\beta_1).p(\gamma_1)$ and $p(E|E_2).p(E_2) = p(\beta_2).p(\gamma_2)$.

Roberto Maieli (maieli@uniroma3.it)
conclusion & further woks

CONCLUSIONS:
- Probabilistic choice, where each branch of a choice is weighted according to a probability distribution, is an established approach for modelling processes;
- this task is often carried out by using additives $\&$, \oplus;
- why should I use unfolding modules instead of "standard" additives?

1. correctness of additive (MALL) proof structure is NON-LINEAR while correctness of generalized multiplicatives is LINEAR (in the behavior size);
2. additives have global effects while here we propose a (non-deterministic) "local choice behavior" inherent in multiplicatives.

FURTHER WORKS:
- connection with Girard's Transcendental Syntax (see yesterday Boris Eng's talk)
- a Naive Bayesian Classifier for Machine Learning based on modules/rules.