Principal types as lambda-nets

Pietro Di Gianantonio, Marina Lenisa
we present a (strict) connection between

- principal types for untyped λ-terms
- cut-free λ-nets (proof nets associated to untyped λ-term)

show that the connections can be used to obtain

- a TAS for principle types
- alternative proofs and explanations of some results relating types to computation
A \(\lambda \)-term \(M \) has principal type \(\tau \) if

- the set of instantiations of \(\tau \) coincides with
- the set of types \(\sigma \) assignable to \(M \)

\[\vdash M : \sigma \] (in a suitable TAS)

Principle types synthesise by the typing algorithm of ML, Haskell

Here we consider intersection type (\(\rightarrow, \wedge \))

- in most approaches, principle types defined on \(\lambda \)-terms in normal form.
- the synthesis of principle intersection type for arbitrary \(\lambda \)-terms is complex [Ronchi88] [Kfoury,Wells02]
Lambda-nets

Proof-nets for λ-terms

- a λ-term M represents a proof π
- π can be represented also by proof-net P
- just some proof-nets in special form are obtained in this way
- normalisation of M (roughly) correspond to cut-elimination in P
Correspondence illustrate by an example

Take the Church number 2 $\lambda f. \lambda x. f(fx)$

the corresponding proof nets is:
The principle type is obtained by replacing each:

- \otimes and \bigotimes by \to
- dereliction and promotion by $!$
- contraction by intersection
- axiom by two instances of the same variable
- box by symbols to representing box boundaries
The result is:

That is: \(! (\Box j \! \alpha \to \beta) \land \Box j \! (\Box i \! \alpha \to \beta) \to (\Box j \Box i \! \alpha \to \gamma)\)

normally written as: \(((\beta \to \gamma) \land (\alpha \to \beta)) \to (\alpha \to \gamma)\)
To design an algorithm to synthesise principle types

- principle type are primarily defined on λ terms in normal forms
- main problem: if $M : \tau$ and $N : \sigma$, what is the principle type of MN?

A first possible solution:

- from τ and σ, derive the lambda-nets π_1 and π_2,
- perform cut elimination on the composition of π_1, π_2,
- from the normalize lambda-net derive the principle type of MN

A second solution:

- mimic cut-elimination on the principle types
An alternative view for normalisation

If

- $\vdash M : \tau_1 \rightarrow \tau_2$
- $\vdash N : \sigma$

The principle type of MN is obtained by:

- defining the MGU U between τ_1 and σ
 - making the two types equal by
 - instantiating variable (like in standard MGU)
 - duplicating boxes
 - return the application of U to τ_2

Normalisation as an MGU algorithm
Further consequences

Relate types with computations

- $M : \tau$ (standard type) iff
- M has a principle type iff
- cut-elimination on the λ-net for M converges
- M is normalizable
Therefore:

- if M is typable, then it is normalisable
- subject reduction holds
 - reduction preserve principle types
to find a type for a term is as complex as normalising it
 one build a type that is an expansion of the normal form

- types contain information about the number of reduction steps in normalisation
 normalisation is related to cut-elimination and the number of steps cut-elimination depends on complexity of the formula
- inhabitability of types is decidable, and related to correctness of proof structures
 a type as only a finite set of possible candidates as principle type, check for any of them if it is the representation of a term
Further consequences

Synthesise a type system for call-by-value λ-calculus

Consider:

- the encoding of the call-by-value λ-calculus in LL, through λ-nets $O \sim!(O \rightarrow O)$
- the corresponding principle types, through the above translation
- the set of types instantiation of principle types
Thanks for your attention