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Sensitivity

An important property of functions is s-sensitivity – related to

lipschitz continuity and non-expansiveness.

d(f (x), f (y)) ≤ s · d(x , y)
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Sensitivity

Sensitivity is useful for Differential Privacy, AI, etc which has

motivated programming languages that track sensitivity at the

type level
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This talk

Graded affine linear bunched logic for tracking sensitivity in

different `p spaces.
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Prior Work: Fuzz

A higher order language for writing differentially private database

queries.

x1 :r1 τ1, x2 :r2 τ2, . . . , xn :rn τn,` e : τ ′

Fuzz requires tracking the sensitivity of each variable.
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Connection to LL

Fuzz comes from bounded linear logic. ⊗,&,⊕,(, !rA

Γ ` e : τ1 ⊗ τ2 ∆, x :r τ1, y :r τ2 ` e ′ : τ ′

∆ + rΓ ` let (x , y) = e in e ′ : τ ′
⊗E
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Semantics of Fuzz

x :r τ ` e : τ ′

=⇒

(!rτ) ( τ ′

=⇒

f : JτK → Jτ ′K

(f is r-expansive)
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Problem!

Fuzz natively supports two metric spaces for pairs, which is not

expressive enough for some applications.

A⊗ B , JAK× JBK; d(x , y) = d(x1, y1) + d(x2, y2)

A & B , JAK× JBK; d(x , y) = max{d(x1, y1), d(x2, y2)}
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`p Metric

These metrics are special cases of the `p metric.

`p(x , y) = p
√
|x1 − y1|p + |x2 − y2|p

Other `p norms are useful for different forms of DP, machine

learning, etc
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A Partial Solution: Duet

Duet extended Fuzz with `1, `2, and `∞ matrices as primitives. We

present a logic for managing `p metrics natively.

M`[m, n] τ

` ∈ norm ::= `1 | `2 | `∞
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Example: Duet Overestimation

Suppose that we have a function which takes a pair in the `2

metric, is 2-sensitive to the first argument, and 1-sensitive to the

second.

f : (!2R)⊗2 R ( R

This type is not expressible in Duet. Instead both elements must

be treated as 2-sensitive.

f : (M`2 [2, 1](!2R)) ( R
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Contributions

We present a logic based on Fuzz’s type system using bunched

implications to manage function sensitivity under different `p

metrics. Our main results:

• Semantics in metric spaces

• Proof of Cut Elimination
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Formulas of `p Logic

A ::= 1 | ⊥ | R | !sA | A (p A | A⊗p A | A⊕ A

p ∈ R≥1 ∪ {∞}
s ∈ R≥0
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Bunched Environments

The strength of our logic comes from Bunches

Γ ::= · | [A]s | Γ ,p Γ

The [A]s form is the same sensitivity tracking in the environment

as in Fuzz.

Γ,p Γ denotes two subtrees connected using the `p metric.

Bunches originally come from the Bunched Implications (BI) Logic

and Separation Logic.
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A fragment of `p Logic

Γ ,p [A]1 ` B

Γ ` A (p B
(R

Γ ` A ∆([B]s) ` C

∆([A (p B]1 ,p sΓ) ` C
(L

Γ ` A ∆ ` B

Γ ,p ∆ ` A⊗p B
⊗R

Γ([A]s ,p [B]s) ` C

Γ([A⊗p B]s) ` C
⊗L
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A fragment of `p Logic

Γ ` A

sΓ ` !sA
!R

Γ([A]r ·s) ` B

Γ([!rA]s) ` B
!L

Γ(∆ ,p ∆′) ` A ∆ ≈ ∆′

Γ(Contr(p,∆,∆′)) ` A
Contr

Γ(·) ` A

Γ(∆) ` A
Weak

Contr(p, ·, ·) = ·
Contr(p, [A]s , [A]r ) = [A]`p(s,r)

Contr(p, (Γ1,q Γ2), (∆1,q ∆2)) = Contr(p, Γ1,∆1),q Contr(p, Γ2,∆2)
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Bunched Environments

Bunches also allow some properties to fall out naturally such as

distributivity of plus (⊕) over with (& or ⊗∞).

• A⊗∞ (B ⊕ C ) ` (A⊗∞ B)⊕ (A⊗∞ C )

• (A⊗∞ B)⊕ (A⊗∞ C ) ` A⊗∞ (B ⊕ C )
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Weakening Properties

Our logic is affine which allows for sensitivity “Subsumption” as a

derived rule.

Γ(!sA) ` B s ≤ s ′

Γ(!s′A) ` B
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Main Results – Cut Elimination

Γ ` A ∆(A) ` B

∆(Γ) ` B
Cut

The Cut rule is admissible in `p Logic. This proof is made difficult

by bunched environments and the generalized contraction rule.
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Main Results – Metric Spaces Semantics

Every formula in `p logic is equipped with a metric space and every

derivation has an interpretation as a non-expansive function as

follows:

Γ ` A =⇒ JΓKe → JAKlf

JAxiomKd , λx . x

J( R πKd , λΓ. λA. JπKd (Γ,A)

J⊗R π1 π2Kd , λ(Γ,∆). (Jπ1Kd Γ), (Jπ2Kd ∆)

J⊗L πKd , λΓ(a, b). (JπKd Γ(a, b))
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Where next?

There’s a lot of places we can take this project next.

• Probabilistic Setting

Fuzz and Duet have a feature for DP called the “probability

monad.” This is entirely missing from our logic currently.

• Term Calculus

Extending Duet/Fuzz further to handle `p metrics natively

would be welcome features.

20



Thank you!


	Thank you!

