A gentle introduction to Girard’s Transcendental Syntax

LIPN – Université Sorbonne Paris Nord

Boris Eng Thomas Seiller
A bit of context

Geometry of Interaction (GoI)

A lot of definitions...But in our case:
A bit of context

Geometry of Interaction (GoI)

A lot of definitions...But in our case:

Girard’s original Geometry of Interaction [GoI I, 1989].
A bit of context

Geometry of Interaction (GoI)

A lot of definitions...But in our case:

Girard’s original Geometry of Interaction [GoI I, 1989].

Goal: study the dynamics of linear logic from computation (operator algebras).
A bit of context

Geometry of Interaction (GoI)

A lot of definitions...But in our case:

Girard’s original *Geometry of Interaction* [GoI I, 1989].

Goal: study the dynamics of linear logic from *computation* (operator algebras).

Transcendental Syntax [GoI VI, 2013]: the successor.
A bit of context

Geometry of Interaction (GoI)

A lot of definitions...But in our case:

Girard’s original Geometry of Interaction [GoI I, 1989].

Goal: study the *dynamics* of linear logic from *computation* (operator algebras).

Transcendental Syntax [GoI VI, 2013]: the successor.

Goal: linear logic (proof-nets) as *emerging* from computation *without semantics*.
A bit of context

Geometry of Interaction (GoI)

A lot of definitions... But in our case:

Girard’s original Geometry of Interaction [GoI I, 1989].

- **Goal**: study the **dynamics** of linear logic from **computation** (operator algebras).

Transcendental Syntax [GoI VI, 2013]: the successor.

- **Goal**: linear logic (proof-nets) as **emerging** from computation **without semantics**.

- **Computational bricks**: "stellar resolution" (not the only possibility).
A bit of context

Geometry of Interaction (GoI)

A lot of definitions...But in our case:

Girard’s original Geometry of Interaction [GoI I, 1989].

- **Goal**: study the *dynamics* of linear logic from *computation* (operator algebras).

- **Goal**: linear logic (proof-nets) as *emerging* from computation *without semantics*.
- **Computational bricks**: "stellar resolution" (not the only possibility).
- **Logical correctness**: by symmetric computational testing.
Stellar Resolution

Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

\[
\phi \frac{g(x)}{\text{one.pnum}} + a(x) - b(x) \quad \phi \frac{a(f(y))}{\text{two.pnum}} - a(f(y)) + c(y)
\]

Evaluation: link-contraction by Robinson’s Resolution rule.

Execution: construct all possible connected & maximal tilings then evaluate them.
Stellar Resolution

Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

\[
g(x) \cdot \phi_1 \cdot \phi_2 \cdot \\
\ + a(x) \quad \ldots \quad \ - a(f(y)) \quad \ + c(y) \\
\ - b(x) \cdot \\
\]

Evaluation: link-contraction by Robinson’s Resolution rule.

Execution: construct all possible connected & maximal tilings then evaluate them.
Stellar Resolution

Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

\[g(x) \rightarrow \phi_1 + a(x) \rightarrow -a(f(y)) \rightarrow \phi_2 + c(y) \rightarrow -b(x) \]

Evaluation : link-contraction by Robinson’s Resolution rule.
Stellar Resolution

Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

\[
\phi_{\text{one.pnum}} \quad g(x) \cdot \phi_1 \cdot +a(x) \cdot -a(f(y)) \cdot +c(y) \cdot -b(x) \cdot \phi_2
\]

Evaluation: link-contraction by Robinson’s Resolution rule.

Execution: construct all possible connected & maximal tilings then evaluate them.
Encoding proof-structures

Computational content of proofs

\[\varphi \otimes \]
Encoding proof-structures

Computational content of proofs
Encoding proof-structures

Computational content of proofs

\[\text{ax} \quad \text{ax} \quad \text{ax} \]
\[1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \]
\[\Rightarrow \quad \otimes \quad \Rightarrow \]
\[7 \quad 8 \]

\[\text{cut} \quad \text{cut} \]

\[R \quad \star \]
\[\mathcal{I} \quad \mathcal{L} \quad \mathcal{I} \quad \mathcal{L} \]

Ex
Encoding proof-structures

Computational content of proofs
Encoding proof-structures

Logical content of proofs

\[\mathcal{L} \otimes \text{cut} \]

\[\mathcal{R} \otimes \text{cut} \]

Danos-Regnier correctness: is axioms+test a tree for any test?

Stellar logical correctness: does \(\text{Ex}(\text{uniEF26} \text{ax} S \top \text{uniEF26} \text{test} S, \phi) \) satisfy some property \(P \)?

\[\text{↰ MLL :} | \text{Ex}(\text{uniEF26} \text{ax} S \top \text{uniEF26} \text{test} S, \phi) | = \text{one.pnum.} \]

\[\text{↰ MLL+MIX :} \text{Ex}(\text{uniEF26} \text{ax} S \top \text{uniEF26} \text{test} S, \phi) \text{ terminates.} \]

Orthogonality. \(\text{Ex}(\text{uniEF26} \text{one.pnum} \top \text{uniEF26} \text{two.pnum}) \) satisfies \(P \) \(\iff \) \(\text{uniEF26} \text{one.pnum} \bot \text{uniEF26} \text{two.pnum} \).
Encodings proof-structures

Logical content of proofs

Danos-Regnier correctness: is axioms+test a tree for any test?
Encoding proof-structures

Logical content of proofs

Danos-Regnier correctness: is axioms+test a tree for any test?
Stellar logical correctness: does \(\text{Ex}(\Phi_{\text{ax}} \cup \Phi_{\text{test}}) \) satisfy some property \(P \)?
Encoding proof-structures

Logical content of proofs

Danos-Regnier correctness: is axioms+test a tree for any test?

Stellar logical correctness: does $\text{Ex}(\Phi_{\text{ax}} \cup \Phi_{\text{test}}_{\mathcal{I},\varphi})$ satisfy some property P?

\Downarrow MLL: $|\text{Ex}(\Phi_{\text{ax}}_{\mathcal{I}} \cup \Phi_{\text{test}}_{\mathcal{I},\varphi})| = 1$.
Encoding proof-structures

Logical content of proofs

Danos-Regnier correctness: is axioms+test a tree for any test?

Stellar logical correctness: does $\text{Ex}(\Phi^\text{ax}_\mathcal{I} \cup \Phi^\text{test}_\mathcal{I},\phi)$ satisfy some property P?

- $\text{MLL}: |\text{Ex}(\Phi^\text{ax}_\mathcal{I} \cup \Phi^\text{test}_\mathcal{I},\phi)| = 1$.
- $\text{MLL+MIX}: \text{Ex}(\Phi^\text{ax}_\mathcal{I} \Phi^\text{test}_\mathcal{I},\phi)$ terminates.
Encoding proof-structures

Logical content of proofs

\[\begin{array}{c}
\text{ax} & 1 \\
\text{x} & 2 \\
\text{ax} & 3 \\
\text{ax} & 4 \\
\text{ax} & 5 \\
\text{ax} & 6 \\
\downarrow \text{cut} & \\
\downarrow \text{cut} & \\
7 & \text{cut} \\
8 & \text{cut} \\
\end{array} \]

Danos-Regnier correctness: is axioms+test a tree for any test?

Stellar logical correctness: does \(\text{Ex}(\Phi^\text{ax} \cup \Phi^\text{test}, \varphi) \) satisfy some property \(P \)?

\(\text{MLL:} \quad |\text{Ex}(\Phi^\text{ax} \cup \Phi^\text{test}, \varphi)| = 1. \)

\(\text{MLL+MIX:} \quad \text{Ex}(\Phi^\text{ax} \cup \Phi^\text{test}, \varphi) \) terminates.

Orthogonality. \(\text{Ex}(\Phi_1 \cup \Phi_2) \) satisfies \(P \iff \Phi_1 \perp \Phi_2. \)
Two notions of type

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^\perp | A \otimes B | A \between B$.

Infininitely many (sub)types + ∈ A usually undecidable vs #: A usually decidable.

Related by adequacy: $\text{Tests}(A) \subseteq A$.

Tests (A)
Two notions of type

Unified in the same framework

Types as labels (type theory). \(A, B ::= X_i \mid X_i^\perp \mid A \otimes B \mid A \bowtie B. \)

\[\downarrow \quad A \mapsto \text{Tests}(A) \text{ finite} \quad \Phi \text{ logically correct } \iff \Phi \perp \text{Tests}(A). \]
Two notions of type

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i \mid X_i \perp \mid A \otimes B \mid A \bowtie B$.

$\Downarrow A \mapsto \text{Tests}(A)$ finite Φ logically correct $\iff \Phi \perp \text{Tests}(A)$.

Types as behaviour classes (realisability).
Two notions of type

Unified in the same framework

Types as labels (type theory). \(A, B ::= X_i \mid X_i^\perp \mid A \otimes B \mid A \# B. \)

\(\downarrow A \mapsto \text{Tests}(A) \) finite \(\Phi \) logically correct \(\iff \Phi \perp \text{Tests}(A). \)

Types as behaviour classes (realisability).

- Pre-type: set of constellation \(A; \)
Two notions of type

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i \mid X_i^\perp \mid A \otimes B \mid A \bowtie B$.

$\Downarrow A \leftrightarrow \text{Tests}(A)$ finite

Φ logically correct $\iff \Phi \perp \text{Tests}(A)$.

Types as behaviour classes (realisability).

- Pre-type: set of constellation A;
- Orthogonal: A^\perp (dual constellations);
Two notions of type

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i \mid X_i^\perp \mid A \otimes B \mid A \multimap B.$

\Downarrow $A \mapsto \text{Tests}(A)$ finite \hspace{1cm} Φ logically correct \iff $\Phi \perp \text{Tests}(A)$.

Types as behaviour classes (realisability).

- Pre-type: set of constellation A;
- Orthogonal: A^\perp (dual constellations); Conduct: $\text{A} = \text{A}^\perp^\perp$;
Two notions of type

Unified in the same framework

Types as labels (type theory). \(A, B ::= X_i \mid X_i^\bot \mid A \otimes B \mid A \Rightarrow B. \)
\(\vdash A \leftrightarrow \text{Tests}(A) \) finite \(\Phi \) logically correct \(\iff \Phi \bot \text{Tests}(A). \)

Types as behaviour classes (realisability).

- Pre-type : set of constellation \(A \);
- Orthogonal : \(A^\bot \) (dual constellations); Conduct : \(A = A^{\bot\bot} \);
- Tensor : \(A \otimes B = \{ \Phi_A \cup \Phi_B, \Phi_A \in A, \Phi_B \in B \}^{\bot\bot}. \)

\(\Downarrow \) \(A \) \(\text{Tests}(A) \) \(\bot \) \(\subseteq A \).
Two notions of type

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^\bot | A \otimes B | A \triangleleft B.$

\[A \leftrightarrow \text{Tests}(A) \text{ finite} \quad \Phi \text{ logically correct} \iff \Phi \perp \text{Tests}(A). \]

Types as behaviour classes (realisability).

- Pre-type: set of constellation A;
- Orthogonal: A^\bot (dual constellations); Conduct: $A = A^{\bot\bot}$;
- Tensor: $A \otimes B = \{ \Phi_A \cup \Phi_B, \Phi_A \in A, \Phi_B \in B \}^{\bot\bot}$.

Infinitely many (sub)types + $\Phi \in A$ usually undecidable vs $\Phi : A$ usually decidable.
Two notions of type

Unified in the same framework

Types as labels (type theory). \(A, B ::= X_i \mid X_i^\perp \mid A \otimes B \mid A \Rightarrow B. \)
\(\Downarrow \) \(A \mapsto \text{Tests}(A) \) finite \(\Phi \) logically correct \iff \(\Phi \perp \text{Tests}(A). \)

Types as behaviour classes (realisability).

- Pre-type : set of constellation \(A \);
- Orthogonal : \(A^\perp \) (dual constellations); Conduct : \(A = A^\perp\perp \);
- Tensor : \(A \otimes B = \{ \Phi_A \cup \Phi_B, \Phi_A \in A, \Phi_B \in B \}^\perp\perp. \)

Infinitely many (sub)types + \(\Phi \in A \) usually undecidable *vs* \(\Phi : A \) usually decidable.
Related by *adequacy* : \(\text{Tests}(A)^\perp \subseteq A. \)
Technical development

Current works / In progress.
Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties;
Technical development

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
Technical development

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
- model of MLL(+MIX) and IMELL (Intuitionistic exponentials);
Technical development

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
- model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.
Technical development

Current works / In progress.

• formal definition of stellar resolution & properties;
• encoding of several models (automata, circuits, tiling models, ...);
• model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.

• New point of view for first/second order logic + additives + neutrals;
Technical development

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
- model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.

- New point of view for first/second order logic + additives + neutrals;
- Implicit computational complexity analysis.
Technical development

Current works / In progress.
 • formal definition of stellar resolution & properties;
 • encoding of several models (automata, circuits, tiling models, ...);
 • model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.
 • New point of view for first/second order logic + additives + neutrals;
 • Implicit computational complexity analysis.

Thank you for listening.