Minimizing Markov chains
Beyond Bisimilarity*

Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, Radu Mardare
Aalborg University, Denmark

22 April 2017 - Uppsala, Sweden

SynCoP + PV 2017

(*) On the Metric-based Approximate Minimization of Markov Chains - accepted for ICALP 2017
Best Approximant & Parameter Synthesis

MC(5)
Best Approximant & Parameter Synthesis
Best Approximant & Parameter Synthesis

MC(5)
Best Approximant & Parameter Synthesis
Best Approximant & Parameter Synthesis

MC(5)
Optimal parameters may be irrational
Optimal parameters may be irrational!

\[x = \frac{1}{30} \left(10 + \sqrt{163} \right) \]

\[y = \frac{21}{200} \]
Optimal parameters may be irrational!

\[
\delta(m_0, n_0) = \frac{436}{675} - \frac{163\sqrt{163}}{13500} \approx 0.49
\]

Optimal distance is irrational!

\[
x = \frac{1}{30} \left(10 + \sqrt{163}\right)
\]

\[
y = \frac{21}{200}
\]
The focus of the talk

- Probabilistic Models (Markov chains)
- Automatic verification (e.g., Model Checking)
 - state space explosion (even after model reduction, symbolic tech., partial-order reduction)
- Still too large: one needs to compromise in the accuracy of the model (introduce an error)
- Our proposal: metric-based state space reduction
Probabilistic Bisimulation

[Larsen & Skou’91]
Probabilistic Bisimulation

[Le Larsen & Skou’91]
Probabilistic Bisimulation

[Larsen & Skou’91]
Probabilistic Bisimulation

[Larsen & Skou’91]
Probabilistic Bisimulation

[Probabilistic Bisimulation][Larsen & Skou’91]
Probabilistic Bisimulation

[Optimal lumping
[Kemeny & Snell’60]]

[Larsen & Skou’91]
Probabilistic Bisimulation

[Larsen & Skou’91]

Optimal lumping
[Kemeny & Snell’60]

Efficient technique
[Derisavi et al.’03]
Probabilistic Bisimulation

[Optimal lumping][Kemeny & Snell’60]

[Efficient technique][Derisavi et al.’03]

...but small variations may prevent aggregation
Probabilistic Bisimulation

[łarsen & Skou’91]

...but small variations may prevent aggregation
Probabilistic Bisimulation

$Larsen & Skou’91$

...but small variations may prevent aggregation
Bisimilarity Distance

\[M = (M, \tau, \ell, m_0) \]

\[N = (N, \theta, \alpha, n_0) \]
Bisimilarity Distance

\[\mathcal{M} = (M, \tau, \ell, m_0) \]

\[\mathcal{N} = (N, \theta, \alpha, n_0) \]
Bisimilarity Distance

\[\mathcal{M} = (M, \tau, \ell, m_0) \quad \mathcal{N} = (N, \theta, \alpha, n_0) \]
Bisimilarity Distance

\[\mathcal{M} = (M, \tau, \ell, m_0) \quad \text{and} \quad \mathcal{N} = (N, \theta, \alpha, n_0) \]
Bisimilarity Distance

\[\mathcal{M} = (M, \tau, \ell, m_0) \]

\[\mathcal{N} = (N, \theta, \alpha, n_0) \]
Bisimilarity Distance

\[M = (M, \tau, \ell, m_0) \quad \text{and} \quad N = (N, \theta, \alpha, n_0) \]

Graphical representation with nodes labeled as follows:
- \(m_0 \) to \(m_1 \) with edge weight \(\frac{1}{3} \)
- \(m_0 \) to \(m_2 \) with edge weight \(\frac{2}{3} \)
- \(m_1 \) to \(m_2 \) with edge weight \(\frac{1}{3} \)
- \(m_1 \) to \(m_0 \) with edge weight \(\frac{1}{3} \)
- \(n_0 \) to \(n_1 \) with edge weight \(\frac{1}{3} + \epsilon \)
- \(n_1 \) to \(n_0 \) with edge weight \(\frac{1}{3} \)
- \(n_0 \) to \(n_2 \) with edge weight \(\frac{1}{3} \)
- \(n_1 \) to \(n_2 \) with edge weight \(\epsilon \)
- \(n_2 \) to \(n_3 \) with edge weight \(\frac{1}{3} \)
- \(n_3 \) to \(n_2 \) with edge weight \(\frac{1}{3} - \epsilon \)
- \(n_2 \) to \(n_1 \) with edge weight \(\frac{1}{3} - \epsilon \)
- \(n_1 \) to \(n_2 \) with edge weight \(\epsilon \)
Bisimilarity Distance
(fixed point characterization by van Breugel & Worrell)

Given a parameter $\lambda \in (0, 1]$, called discount factor, the bisimilarity distance δ_λ is the smallest distance satisfying

$$
\delta_\lambda(m,n) = \begin{cases}
1 & \text{if } \ell(m) \neq \alpha(n) \\
\lambda \cdot \mathcal{K}(\delta_\lambda)(\tau(m),\theta(n)) & \text{otherwise}
\end{cases}
$$
Bisimilarity Distance

(fixed point characterization by van Breugel & Worrell)

Given a parameter \(\lambda \in (0, 1] \), called \textit{discount factor}, the \textit{bisimilarity distance} \(\delta_\lambda \) is the smallest distance satisfying

\[
\delta_\lambda(m,n) = \begin{cases}
1 & \text{if } \ell(m) \neq \alpha(n) \\
\lambda \cdot \mathcal{K}(\delta_\lambda)(\tau(m),\theta(n)) & \text{otherwise}
\end{cases}
\]

\textbf{Kantorovich lifting}
Bisimilarity Distance

(fixed point characterization by van Breugel & Worrell)

Given a parameter \(\lambda \in (0, 1] \), called discount factor, the **bisimilarity distance** \(\delta_\lambda \) is the smallest distance satisfying

\[
\delta_\lambda(m, n) = \begin{cases}
1 & \text{if } \ell(m) \neq \alpha(n) \\
\lambda \cdot \mathcal{K}(\delta_\lambda)(\tau(m), \theta(n)) & \text{otherwise}
\end{cases}
\]

\[
\mathcal{K}(d)(\tau(m), \theta(n)) = \min \left\{ \sum d(u, v) \cdot C(u, v) \left| \begin{array}{l}
\sum_{u \in M} C(u, v) = \theta(n)(v) \\
\sum_{v \in N} C(u, v) = \tau(m)(u)
\end{array} \right. \right\}
\]
Bisimilarity Distance
(fixed point characterization by van Breugel & Worrell)

Given a parameter $\lambda \in (0,1]$, called discount factor, the bisimilarity distance δ_λ is the smallest distance satisfying

$$\delta_\lambda(m,n) = \begin{cases} 1 & \text{if } \ell(m) \neq \alpha(n) \\ \lambda \cdot \mathcal{K}(\delta_\lambda)(\tau(m),\theta(n)) & \text{otherwise} \end{cases}$$

$$\mathcal{K}(d)(\tau(m),\theta(n)) = \min \left\{ \sum d(u,v) \cdot C(u,v) \right\} \quad \left\{ \begin{array}{l} \sum_{u \in M} C(u,v) = \theta(n)(v) \\ \sum_{v \in N} C(u,v) = \tau(m)(u) \end{array} \right\}$$

Discount at each step

Kantorovich lifting

Coupling
Remarkable properties

Theorem (Desharnais et al. 99)

\[m \sim n \quad \text{iff} \quad \delta_\lambda(m,n) = 0 \]

Theorem (Chen, van Breugel, Worrell 12)

The probabilistic bisimilarity distance can be computed in polynomial time

(Jonsson & L 91)

(Bacci, L, Mardare 13)
Approximate verification

Theorem (Chen et al. FoSSaCS’12, Bacci et al. ICTAC’15)

\[|P(\mathcal{M})([\varphi]) - P(\mathcal{N})([\varphi])| \leq \delta_1(\mathcal{M}, \mathcal{N})\]

for all LTL formulas!

difference in the probability of satisfying \(\varphi\)
Approximate verification

Theorem (Chen et al. FoSSaCS’12, Bacci et al. ICTAC’15)

\[
|P(\mathcal{M})([\varphi]) - P(\mathcal{N})([\varphi])| \leq \delta_1(\mathcal{M},\mathcal{N})
\]

for all LTL formulas!

…imagine that \(|\mathcal{M}| \gg |\mathcal{N}|\), we can use \(\mathcal{N}\) in place of \(\mathcal{M}\)

\[P(\mathcal{N})([\varphi])\quad \text{approximate solution on } \varphi\]

\[P(\mathcal{M})([\varphi])\]
Metric-based State Space Reduction

Closest Bounded Approximant (CBA) Minimum Significant Approximant Bound (MSAB)
Metric-based State Space Reduction

Closest Bounded Approximant (CBA)

Minimum Significant Approximant Bound (MSAB)

minimize d
Metric-based State Space Reduction

Closest Bounded Approximant (CBA)

$$\text{minimize } d \quad \text{MC}(k)$$

Minimum Significant Approximant Bound (MSAB)

$$\text{minimize } k$$
List of our Results

- CBA as bilinear program
- The CBA’s threshold problem is NP-hard (complexity lower bound)
 - PSPACE (complexity upper bound)
- The MSAB’s threshold problem is NP-complete
- Expectation Maximization heuristic for CBA
The CBA-λ problem

The Closest Bounded Approximant w.r.t. δ_λ

Instance: An MC M, and a positive integer k

Output: An MC \tilde{N}, with at most k states
minimizing $\delta_\lambda(m_0,\tilde{n}_0)$

$$\delta_\lambda(m_0,\tilde{n}_0) = \inf \{ \delta_\lambda(m_0,n_0) \mid N \in \text{MC}(k) \}$$

we get a solution iff the infimum is a minimum
The CBA-\(\lambda\) problem

The Closest Bounded Approximant w.r.t. \(\delta_\lambda\)

\textbf{Instance:} An MC \(M\), and a positive integer \(k\)

\textbf{Output:} An MC \(\tilde{N}\), with at most \(k\) states

\(\delta_\lambda(m_0,\tilde{n}_0) = \inf \{ \delta_\lambda(m_0,n_0) \mid N \in \text{MC}(k) \} \)

we get a solution iff the infimum is a minimum

generalization of bisimilarity quotient
CBA-λ as a Bilinear Program

Lemma (Meaningful labels)

For any $N \in MC(k)$, there exists $N' \in MC(k)$ with labels taken from M, such that $\delta_{\lambda}(M,N) \geq \delta_{\lambda}(M,N')$
CBA-\(\lambda\) as a Bilinear Program

Lemma (Meaningful labels)

For any \(N \in \text{MC}(k)\), there exists \(N' \in \text{MC}(k)\) with labels taken from \(M\), such that \(\delta_\lambda(M,N) \geq \delta_\lambda(M,N')\)

minimize \(d_{m_0,n_0}\)

such that \(\lambda \sum_{(u,v) \in M \times N} c_{u,v}^m \cdot d_{u,v} \leq d_{m,n}\)

\(1 - \alpha_{n,l} \leq d_{m,n} \leq 1\)

\(\alpha_{n,l} \cdot \alpha_{n,l'} = 0\)

\(\sum_{l \in L(M)} \alpha_{n,l} = 1\)

\(\sum_{v \in N} c_{u,v}^m = \tau(m)(u)\)

\(\sum_{u \in M} c_{u,v}^m = \theta_{n,v}\)

\(c_{u,v}^m \geq 0\)

\(m \in M, n \in N\)

\(n \in N, l \in L(M), l(m) \neq l\)

\(n \in N, l, l' \in L(M), l \neq l'\)

\(n \in N\)

\(m, u \in M, n \in N\)

\(m \in M, n, v \in N\)

\(m, u \in M, n, v \in N\)
CBA-\(\lambda\) as a Bilinear Program

Lemma (Meaningful labels)

For any \(N\in MC(k)\), there exists \(N'\in MC(k)\) with labels taken from \(M\), such that \(\delta_\lambda(M,N) \geq \delta_\lambda(M,N')\)

<table>
<thead>
<tr>
<th>minimize (d_{m_0,n_0})</th>
<th>such that</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda \sum_{(u,v)\in M\times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n})</td>
<td>(m \in M, n \in N)</td>
</tr>
<tr>
<td>(1 - \alpha_{n,l} \leq d_{m,n} \leq 1)</td>
<td>(n \in N, l \in L(M), \ell(m) \neq l)</td>
</tr>
<tr>
<td>(\alpha_{n,l} \cdot \alpha_{n,l'} = 0)</td>
<td>(n \in N, l, l' \in L(M), l \neq l')</td>
</tr>
<tr>
<td>(\sum_{l\in L(M)} \alpha_{n,l} = 1)</td>
<td>(n \in N)</td>
</tr>
<tr>
<td>(\sum_{v\in N} c_{u,v}^{m,n} = \tau(m)(u))</td>
<td>(m, u \in M, n \in N)</td>
</tr>
<tr>
<td>(\sum_{u\in M} c_{u,v}^{m,n} = \theta_{n,v})</td>
<td>(m \in M, n, v \in N)</td>
</tr>
<tr>
<td>(c_{u,v}^{m,n} \geq 0)</td>
<td>(m, u \in M, n, v \in N)</td>
</tr>
</tbody>
</table>
CBA-λ as a Bilinear Program

Lemma (Meaningful labels)

For any $N \in MC(k)$, there exists $N' \in MC(k)$ with labels taken from M, such that $\delta_\lambda(M, N) \geq \delta_\lambda(M, N')$

minimize d_{m_0, n_0}
such that $\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n}$
$1 - \alpha_{n, l} \leq d_{m, n} \leq 1$
$\alpha_{n, l} \cdot \alpha_{n, l'} = 0$
$\sum_{l \in L(M)} \alpha_{n, l} = 1$
$\sum_{v \in N} c_{u, v}^{m, n} = \tau(m)(u)$
$\sum_{u \in M} c_{u, v}^{m, n} = \theta_{n, v}$
$c_{u, v}^{m, n} \geq 0$

$m \in M, n \in N$
$n \in N, l \in L(M), \ell(m) \neq l$
$n \in N, l, l' \in L(M), l \neq l'$
$n \in N$
$m, u \in M, n \in N$
$m \in M, n, v \in N$
$m, u \in M, n, v \in N$
CBA-\(\lambda\) as a Bilinear Program

Lemma (Meaningful labels)
For any \(N \in MC(k)\), there exists \(N' \in MC(k)\) with labels taken from \(M\), such that \(\delta_\lambda(M,N) \geq \delta_\lambda(M,N')\)

minimize \(d_{m_0,n_0}\) such that \(\lambda \sum_{(u,v) \in M \times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n}\)

\[1 - \alpha_{n,l} \leq d_{m,n} \leq 1\]

\[\alpha_{n,l} \cdot \alpha_{n,l'} = 0\]

\[\sum_{l \in L(M)} \alpha_{n,l} = 1\]

\[\sum_{v \in N} c_{u,v}^{m,n} = \tau(m)(u)\]

\[\sum_{u \in M} c_{u,v}^{m,n} = \theta_{n,v}\]

\[c_{u,v}^{m,n} \geq 0\]
CBA-\(\lambda\) as a Bilinear Program

this characterization has two main consequences…

1. CBA-\(\lambda\) admits always a solution

2. CBA-\(\lambda\) is can be approximated up to any precision
Complexity of CBA-λ

“To study the complexity of an optimization problem one has to look at its decision variant”

(C. Papadimitriou)
Complexity of CBA-λ

“To study the complexity of an optimization problem one has to look at its decision variant”

(C. Papadimitriou)

Bounded Approximant threshold wrt d_λ

Instance: An MC M, a positive integer k, and a *rational* $\varepsilon > 0$

Output: *yes* iff there exists N with at most k states such that $\delta_\lambda(m_0,n_0) \leq \varepsilon$
Complexity upper bound

Theorem

BA-\(\lambda \) is in **PSPACE**

Proof sketch: we can encode the question \(\langle M, k, \varepsilon \rangle \in \text{BA-} \lambda \) to that of checking the feasibility of a set of bilinear inequalities. This can be encoded as a decision problem for the existential theory of the reals, thus it can be solved in PSPACE [Canny—STOC88].
Complexity lower bound

Theorem

$\mathbf{BA-\lambda}$ is \mathbf{NP}-hard

Proof idea: we provide a reduction from VERTEX COVER.
Complexity lower bound

Theorem

$\text{BA-}\lambda$ is **NP-hard**

unlikely to solve CBA as simple linear program

Proof idea: we provide a reduction from VERTEX COVER.
The MSAB-λ problem

The Minimum Significant Approximant Bound wrt δ_λ

Instance: An MC M

Output: The smallest k such that $d_\lambda(m_0,n_0)<1$, for some $N\in MC(k)$
The MSAB-λ problem

The Minimum Significant Approximant Bound wrt δ_{λ}

Instance: An MC M

Output: The smallest k such that $d_{\lambda}(m_0,n_0) < 1$, for some $N \in MC(k)$

For $\lambda < 1$, the MSAB-λ problem is trivial, because the solution is always $k = 1$
The MSAB-\(\lambda\) problem

The Minimum Significant Approximant Bound wrt \(\delta_{\lambda}\)**

Instance: An MC \(M\)

Output: The smallest \(k\) such that \(d_{\lambda}(m_0,n_0)<1\), for some \(N\in MC(k)\)

For \(\lambda<1\), the MSAB-\(\lambda\) problem is trivial, because the solution is always \(k=1\)

For \(\lambda=1\), the same problem is surprisingly difficult…
Complexity of MSAB-1

...as before we should look at its decision variant
Complexity of MSAB-1

...as before we should look at its decision variant

Significant Bounded Approximant wrt δ_1

Instance: An MC M and a **positive** k

Output: **yes** iff there exists N with **at most** k
states such that $\delta_1(m_0,n_0) < 1$.
Complexity of MSAB-1

...as before we should look at its decision variant

Significant Bounded Approximant wrt δ_1

Instance: An MC M and a positive k

Output: yes iff there exists N with at most k states such that $\delta_1(m_0,n_0)<1$.

Theorem

SBA-1 is **NP-complete**
Lemma

Assume M be maximally collapsed. Then,

$$\langle M,k \rangle \in SBA-1 \quad \text{iff} \quad G(M) = BSCC \quad \text{and} \quad h + |C| \leq k$$

number of labels in $m_0 \ldots m_{n-1}$
Lemma

Assume M be maximally collapsed. Then,

\[\langle M, k \rangle \in \text{SBA-1} \quad \text{iff} \quad G(M) = C \quad \text{and} \quad h + |C| \leq k \]

Proof sketch: compute with Tarjan’s algorithm all the SCCs of \(G(M) \). Then non deterministically choose a BSCC and a path to it. In poly-time we can count the number of labels in the path and the size of the BSCC.
SBA-1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:

\[\langle G, h \rangle \in \text{VERTEX COVER} \iff \langle M_G, h+m+1 \rangle \in \text{SBA-1} \]
SBA-1 is **NP-hard**

Proof sketch: by reduction to VERTEX COVER:

\[
\langle G, h \rangle \in \text{VERTEX COVER} \quad \text{iff} \quad \langle M_G, h+m+1 \rangle \in \text{SBA-1}
\]

paths from \(e_3\) to \(e_0\) describes all vertex covers of \(G\)
Towards an Algorithm…
Towards an Algorithm…

• CBA can be solved as a bilinear program. Theoretically nice, but practically unfeasible! (our implementation in PENBMI can handle MCs with at most 5 states…)}
Towards an Algorithm…

• CBA can be solved as a bilinear program. Theoretically nice, but practically unfeasible!
 (our implementation in PENBMI can handle MCs with at most 5 states…)

• We are happy with sub-optimal solutions if they can be obtained by a practical algorithm.
EM-like Algorithm

- Given the MC M and an initial approximant N_0
- it produces a sequence N_0, …, N_h of approximants having strictly decreasing distance from M
- N_h may be a sub-optimal solution of CBA-λ
EM-like Algorithm

Algorithm 1

Input: $\mathcal{M} = (M, \tau, \ell)$, $\mathcal{N}_0 = (N, \theta_0, \alpha)$, and $h \in \mathbb{N}$.

1. $i \leftarrow 0$
2. repeat
3. $i \leftarrow i + 1$
4. compute $C \in \Omega(\mathcal{M}, \mathcal{N}_{i-1})$ such that $\delta_\lambda(\mathcal{M}, \mathcal{N}_{i-1}) = \gamma_\lambda^C(\mathcal{M}, \mathcal{N}_{i-1})$
5. $\theta_i \leftarrow \text{UPDATETRANSITION}(\theta_{i-1}, C)$
6. $\mathcal{N}_i \leftarrow (N, \theta_i, \alpha)$
7. until $\delta_\lambda(\mathcal{M}, \mathcal{N}_i) > \delta_\lambda(\mathcal{M}, \mathcal{N}_{i-1})$ or $i \geq h$
8. return \mathcal{N}_{i-1}
EM-like Algorithm

Algorithm 1

Input: $\mathcal{M} = (M, \tau, \ell)$, $\mathcal{N}_0 = (N, \theta_0, \alpha)$, and $h \in \mathbb{N}$.

1. $i \leftarrow 0$
2. repeat
3. $i \leftarrow i + 1$
4. compute $\mathcal{C} \in \Omega(\mathcal{M}, \mathcal{N}_{i-1})$ such that $\delta_\lambda(\mathcal{M}, \mathcal{N}_{i-1}) = \gamma_\lambda^\mathcal{C}(\mathcal{M}, \mathcal{N}_{i-1})$
5. $\theta_i \leftarrow \text{UPDATETRANSITION}(\theta_{i-1}, \mathcal{C})$
6. $\mathcal{N}_i \leftarrow (N, \theta_i, \alpha)$
7. until $\delta_\lambda(\mathcal{M}, \mathcal{N}_i) > \delta_\lambda(\mathcal{M}, \mathcal{N}_{i-1})$ or $i \geq h$
8. return \mathcal{N}_{i-1}

Intuitive Idea

UpdateTransition assigns greater probability to transitions that are most representative of the behavior of M.
Two update heuristics

- **Averaged Marginal (AM):** given N_k we construct N_{k+1} by averaging the marginal of certain “coupling variables” obtained by optimizing the number of occurrences of the edges that are most likely to be seen in M.

- **Averaged Expectations (AE):** similar to the above, but now the N_{k+1} looks only the expectation of the number of occurrences of the edges likely to be found in M.
IPv4 Zero Conf Protocol

Averaged Marginal (AM)
IPv4 Zero Conf Protocol

Averaged Marginal (AM)

$\delta_{0.9}(M,N_0) \approx 0.67$
IPv4 Zero Conf Protocol

Averaged Marginal (AM)

\[\delta_{0.9}(M,N_0) \approx 0.67 \]

\[\delta_{0.9}(M,N_1) \approx 0.043 \]
IPv4 Zero Conf Protocol

Averaged Marginal (AM)

\[\delta_{0.9}(M,N_0) \approx 0.67 \]

\[\delta_{0.9}(M,N_1) \approx 0.043 \]

\[\delta_{0.9}(M,N_2) \approx 0.041 \]
IPv4 Zero Conf Protocol

Averaged Expectations (AE)

$$\delta_{0.9}(M,N_0) \approx 0.67$$
IPv4 Zero Conf Protocol

Averaged Expectations (AE)

$$\delta_{0.9}(M,N_0) \approx 0.67$$

$$\delta_{0.9}(M,N_1) \approx 0.08$$
IPv4 Zero Conf Protocol

Averaged Expectations (AE)

\[\delta_{0.9}(M, N_0) \approx 0.67 \]

\[\delta_{0.9}(M, N_1) \approx 0.08 \]

\[\delta_{0.9}(M, N_2) \approx 0.11 \]
Drunkard's Walk

Averaged Marginal (AM)
Drunkard's Walk

Averaged Marginal (AM)

\[\delta_{0.9}(M,N_0) \approx 0.64 \]
Drunkard's Walk

Averaged Marginal (AM)

\[
\delta_{0.9}(M, N_0) \approx 0.64
\]

\[
\delta_{0.9}(M, N_1) \approx 0.56
\]
Drunkard's Walk

Averaged Marginal (AM)

\[\delta_{0.9}(M, N_0) \approx 0.64 \]

\[\delta_{0.9}(M, N_1) \approx 0.56 \]

\[\delta_{0.9}(M, N_2) \approx 0.567 \]
Drunkard's Walk

Averaged Expectations (AE)

\[\delta_{0.9}(M,N_0) \approx 0.64 \]
Drunkard's Walk

Averaged Expectations (AE)

\[\delta_{0.9}(M,N_0) \approx 0.64 \]

\[\delta_{0.9}(M,N_1) \approx 0.56 \]
Drunkard's Walk

Averaged Expectations (AE)

\[\delta_{0.9}(M,N_0) \approx 0.64 \]

\[\delta_{0.9}(M,N_1) \approx 0.56 \]

\[\delta_{0.9}(M,N_2) \approx 0.543 \]
Drunkard's Walk

Averaged Expectations (AE)

\[
\delta_{0.9}(M,N_0) \approx 0.64
\]

\[
\delta_{0.9}(M,N_1) \approx 0.56
\]

\[
\delta_{0.9}(M,N_2) \approx 0.543
\]

\[
\delta_{0.9}(M,N_3) \approx 0.540
\]
Case	$	M	$	k	$\lambda = 1$	$\lambda = 0.8$				
			δ_{λ}-init	δ_{λ}-final	#	time	δ_{λ}-init	δ_{λ}-final	#	time
IPv4 (AM)	23	5	0.775	0.054	3	4.8	0.576	0.025	3	4.8
	53	5	0.856	0.062	3	25.7	0.667	0.029	3	25.9
	103	5	0.923	0.067	3	116.3	0.734	0.035	3	116.3
	203	6	–	–	–	TO	–	–	–	TO
IPv4 (AE)	23	5	0.775	0.109	2	2.7	0.576	0.049	3	4.2
	53	5	0.856	0.110	2	14.2	0.667	0.049	3	21.8
	103	5	0.923	0.110	2	67.1	0.734	0.049	3	100.4
	203	6	–	–	–	TO	–	–	–	TO
DrkW (AM)	39	7	0.565	0.466	14	259.3	0.432	0.323	14	252.8
	49	7	0.568	0.460	14	453.7	0.433	0.322	14	420.5
	59	8	0.646	–	–	TO	0.423	–	–	TO
DrkW (AE)	39	7	0.565	0.435	11	156.6	0.432	0.321	2	28.6
	49	7	0.568	0.434	10	247.7	0.433	0.316	2	46.2
	59	8	0.646	0.435	10	588.9	0.423	0.309	2	115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf protocol and the classic Drunkard's Walk w.r.t. the heuristics AM and AE.
What we have seen

Theoretical Results
Metric-based state space reduction for MCs
1. Closest Bounded Approximant (CBA) encoded as a bilinear program
2. Bounded Approximant (BA) PSPACE & NP-hard for all $\lambda \in (0,1]$
3. Significant Bounded Approximant (SBA) NP-complete for $\lambda = 1$

Practical Results
We proposed an EM-like method to obtain a sub-optimal approximants
Previous work

• On-the-Fly Exact Computation of Bisimilarity Distances - TACAS 2013

• The BisimDIST Library: Efficient Computation of Bisimilarity Distances for Markovian Models - QEST 2013

• Computing Behavioral Distances, Compositionally - MFCS 2013

• Converging from Branching to Linear Metrics on Markov Chains - ICTAC 2015

• On the Metric-based Approximate Minimization of Markov Chains - ICALP 2017
Future Work

- Is BA-λ SUM-OF-SQUARE-ROOTS-hard?
- Can we obtain a real/better EM-heuristics?
- What about different models/distances?