Verification of Polynomial Interrupt Timed Automata

Béatrice Bérard¹,²,⁴,⁵, Serge Haddad²,⁴,⁵, Claudine Picaronny²,⁴,⁵, Mohab Safey El Din¹,⁴,⁵, Mathieu Sassolas³,⁵

¹Université P. & M. Curie, LIP6
²ENS Cachan, LSV
³Université Paris-Est, LACL
⁴CNRS, ⁵INRIA

SynCoP + PV, ETAPS, Uppsala, April 22nd, 2017
Landing a rocket

- First stage (lasting x_1) in state q_0:
 From distance d, the rocket approaches the land under gravitation g;

- Second stage (lasting x_2, while x_1 is frozen) in q_1:
 The rocket approaches the land with constant deceleration $h < 0$;

- Third stage: The rocket must reach the land with small positive speed (less than ε).

\[\frac{1}{2}g x_1^2 + g x_1 x_2 + \frac{1}{2} h x_2^2 = d \land 0 \leq g x_1 + h x_2 < \varepsilon \]

For all $g \in [7, 10]$ does there exist an $h \in [-3, -1]$ such that the rocket is landing?
Hybrid automata

Hybrid automaton = finite automaton + variables

Variables evolve in states and can be tested and updated on transitions.

- Clocks are variables with slope 1 in all states
- Stopwatches are variables with slope 0 or 1

Verification problems are mostly undecidable

- Decidability requires restricting:
 - either the flows [Henzinger et al. 1998]
 - or the jumps [Alur et al. 2000] for flows \(\dot{x} = Ax \)
 - or both like in Timed Automata = finite automaton + clocks with guards \(x \preceq c \) and reset [Alur, Dill 1990]

- Other approaches exist like bounded delay reachability or approximations by discrete transition systems.
Interrupt clocks

Many real-time systems include interruption mechanisms (as in processors).

Several levels with exactly one active clock at each level

Level 4
Level 3
Level 2
Level 1

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{bmatrix}
\]

Exec:
\[
\begin{bmatrix}
 0 \\
 0 \\
 0 \\
 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
 1.5 \\
 0 \\
 0 \\
 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
 1.5 \\
 0 \\
 2.1 \\
 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
 1.5 \\
 0 \\
 2.1 \\
 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
 1.5 \\
 0 \\
 0 \\
 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
 3.7 \\
 0 \\
 0 \\
 0
\end{bmatrix}
\]
The model of PolITA

In Polynomial Interrupt Timed Automata (PolITA)

- variables are interrupt clocks acting as stopwatches ordered along hierarchical levels,
- guards are polynomial constraints and variables can be updated by polynomials.

Results

- Reachability is decidable in 2EXPTIME.
- The result still holds for several extensions.
- A restricted form of quantitative model checking is also decidable.
- The class PolITA is incomparable with the class SWA of Stopwatch Automata.
Outline

Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition

Algorithmic issues
PolITA: syntax

\[A = (\Sigma, Q, q_0, X, \lambda, \Delta) \]

- Alphabet \(\Sigma \), finite set of states \(Q \), initial state \(q_0 \),
- set of clocks \(X = \{x_1, \ldots, x_n\} \), with \(x_k \) for level \(k \),
- \(\lambda : Q \rightarrow \{1, \ldots, n\} \) state level, with \(x_{\lambda(q)} \) the active clock in state \(q \),
- Transitions in \(\Delta \):

\[
\begin{array}{c}
q, k \quad \overset{g, a, u}{\longrightarrow} \quad q', k'
\end{array}
\]

- Guards: conjunctions of polynomial constraints in \(\mathbb{Q}[x_1, \ldots, x_n] \)
 \(P \succ 0 \) with \(\succ \) in \(\{<, \leq, =, \geq, >\} \), and \(P \in \mathbb{Q}[x_1, \ldots, x_k] \) at level \(k \).
PolITA: updates

From level k to k'

increasing level $k \leq k'$

Level $i > k$: reset
Level k: unchanged or polynomial update $x_k := P$ for some $P \in \mathbb{Q}[x_1, \ldots, x_{k-1}]$
Level $i < k$: unchanged.

$x_2 > 2x_1^2$,

\[
\begin{align*}
(x_1 &:= x_1) \\
x_2 &:= x_1^2 - x_1 \\
x_3 &:= 0 \\
x_4 &:= 0
\end{align*}
\]

$q_1, 2 \rightarrow q_2, 4$
PollTA: updates

From level k to k'

increasing level $k \leq k'$

Level $i > k$: reset
Level k: unchanged or polynomial update $x_k := P$ for some $P \in \mathbb{Q}[x_1, \ldots, x_{k-1}]$
Level $i < k$: unchanged.

Decreasing level

Level $i > k'$: reset
Otherwise: unchanged.
Examples

A_2 in dimension 2

\[(2x_1 - 1)x_2^2 > 1, \quad b \]

\[x_2 \leq 5 - x_1^2, \quad c \]

\[x_1^2 \leq x_1 + 1, \quad a \]

A_3 in dimension 3

\[x_1^2 + x_2^2 < 1 \]

\[0 < x_1 < 1 \]

\[x_1 := 0 \]

\[x_1^2 + x_2^2 + x_3^2 \geq 1 \]
PollTA: semantics

Clock valuation

\[\nu = (\nu(x_1), \ldots, \nu(x_n)) \in \mathbb{R}^n \]

A transition system \(T_A = (S, s_0, \rightarrow) \) for \(A = (\Sigma, Q, q_0, X, \lambda, \Delta) \)

- **Configurations** \(S = Q \times \mathbb{R}^n \), initial configuration \(s_0 = (q_0, \nu_0) \) with \(\nu_0 = 0 \)
- **Time steps** from \(q \) at level \(k \): \((q, \nu) \xrightarrow{d} (q, \nu + k \cdot d) \), only \(x_k \) is active, with all clock values in \(\nu + k \cdot d \) unchanged except \((\nu + k \cdot d)(x_k) = \nu(x_k) + d \)
- **Discrete steps** \((q, \nu) \xrightarrow{e} (q', \nu') \) for a transition \(e : q \xrightarrow{g,a,u} q' \) if \(\nu \) satisfies the guard \(g \) and \(\nu' = \nu[u] \)

An execution

Alternates time and discrete steps

\[
(q_0, \nu_0) \xrightarrow{d_0} (q_0, \nu_0 + \lambda(q_0) \cdot d_0) \xrightarrow{e_0} (q_1, \nu_1) \xrightarrow{d_1} (q_1, \nu_1 + \lambda(q_1) \cdot d_1) \xrightarrow{e_1} \ldots
\]
The image contains a graph and text related to a formal semantics example. The graph represents a transition system with states $q_0, q_1,$ and q_2, and transitions labeled with conditions.

1. $x_1^2 > x_1 + 1, \quad a', \quad x_1 := 0$
2. $x_1^2 \leq x_1 + 1, \quad a$
3. $(2x_1 - 1)x_2^2 > 1, \quad b$
4. $x_2 \leq 5 - x_1^2, \quad c$

The graph has transitions labeled a, b, c with corresponding conditions.

The text includes equations and inequalities:

\[
\begin{align*}
x_1^2 & > x_1 + 1, \\
x_1^2 & \leq x_1 + 1, \\
(2x_1 - 1)x_2^2 & > 1, \\
x_2 & \leq 5 - x_1^2,
\end{align*}
\]

The conditions are checked by regions on the graph.

Blue and green curves meet at real roots of $-2x^5 + x_1^4 + 20x_1^3 - 10x_1^2 - 50x_1 + 26$.

Additional conditions and states are given:

\[
\begin{align*}
a & : \quad x_1 = 1.2 \\
b & : \quad x_2^2 > \frac{1}{1.4} \\
c & : \quad x_2 \leq 3.56
\end{align*}
\]
Reachability problem for PolITA

Given $\mathcal{A} = (\Sigma, Q, q_0, X, \lambda, \Delta)$ and $q_f \in Q$

is there an execution from initial configuration $s_0 = (q_0, 0)$ to (q_f, v) for some valuation v?

Build a finite quotient automaton \mathcal{R}_A

time-abstract bisimilar to \mathcal{T}_A:

- **states**: (q, C) for suitable sets of valuations $C \subseteq \mathbb{R}^n$, where polynomials of \mathcal{A} have constant sign (and number of roots),

- **time abstract transitions**: $(q, C) \rightarrow (q, \text{succ}(C))$ where $\text{succ}(C)$ is the time successor of C, consistent with time elapsing in \mathcal{T}_A,

- **discrete transitions**: $(q, C) \xrightarrow{e} (q', C')$ for $e : q \xrightarrow{g,a,u} q'$ in Δ if C satisfies the guard g and $C' = C[u]$, consistent with discrete steps in \mathcal{T}_A.

The sets C will be cells from a cylindrical decomposition adapted to the polynomials in \mathcal{A}.

Cylindrical decomposition: basic example

The decomposition starts from a set of polynomials and proceeds in two phases: **Elimination phase** and **Lifting phase**.

Starting from single polynomial $P_3 = x_1^2 + x_2^2 + x_3^2 - 1 \in \mathbb{Q}[x_1, x_2][x_3]$

Elimination phase

Produces polynomials in $\mathbb{Q}[x_1, x_2]$ and $\mathbb{Q}[x_1]$ required to determine the sign of P_3.

- First polynomial $P_2 = x_1^2 + x_2^2 - 1$ is produced.
 - If $P_2 > 0$ then P_3 has no real root.
 - If $P_2 = 0$ then P_3 has 0 as single root.
 - If $P_2 < 0$ then P_3 has two real roots.

- In turn the sign of $P_2 \in \mathbb{Q}[x_1][x_2]$ depends on $P_1 = x_1^2 - 1$.

Lifting phase

Produces partitions of \mathbb{R}, \mathbb{R}^2 and \mathbb{R}^3 organized in a tree of cells where the signs of these polynomials (in $\{-1, 0, 1\}$) are constant.
Lifting phase

Level 1: partition of \mathbb{R} in 5 cells
$C_{-\infty} =]-\infty, -1[\cup C_{-1} = \{-1\}, C_0 =]-1, 1[\cup C_1 = \{1\}, C_{+\infty} =]1, +\infty[$
Lifting phase

Level 2: partition of \mathbb{R}^2
Above $C_{-\infty}$: a single cell $C_{-\infty} \times \mathbb{R}$
Above C_{-1}: three cells
$\{-1\} \times]-\infty, 0[, \{(-1,0)\} , \{-1\} \times]0, +\infty[$

Level 1: partition of \mathbb{R} in 5 cells
$C_{-\infty} =]-\infty, -1[, C_{-1} = \{-1\} , C_0 =]-1, 1[,
C_1 = \{1\} , C_{+\infty} =]1, +\infty[$
Level 2 above C_0
Level 2 above C_0

\[-1 < x_1 < 1 \]
\[-\sqrt{1 - x_1^2} < x_2 < \sqrt{1 - x_1^2} \]
Level 2 above C_0

\[C_{0,1} \quad \begin{cases}
-1 < x_1 < 1 \\
 x_2 = \sqrt{1 - x_1^2}
\end{cases} \]

\[C_{0,0} \quad \begin{cases}
-1 < x_1 < 1 \\
 -\sqrt{1 - x_1^2} < x_2 < \sqrt{1 - x_1^2}
\end{cases} \]

\[C_{0,-1} \quad \begin{cases}
-1 < x_1 < 1 \\
 x_2 = -\sqrt{1 - x_1^2}
\end{cases} \]
Level 2 above C_0

\[C_{0,\infty} \quad \{ \begin{align*} -1 < x_1 < 1 \\ x_2 > \sqrt{1 - x_1^2} \end{align*} \]

\[C_{0,1} \quad \{ \begin{align*} -1 < x_1 < 1 \\ x_2 = \sqrt{1 - x_1^2} \end{align*} \]

\[C_{0,0} \quad \{ \begin{align*} -1 < x_1 < 1 \\ -\sqrt{1 - x_1^2} < x_2 < \sqrt{1 - x_1^2} \end{align*} \]

\[C_{0,-1} \quad \{ \begin{align*} -1 < x_1 < 1 \\ x_2 = -\sqrt{1 - x_1^2} \end{align*} \]

\[C_{0,-\infty} \quad \{ \begin{align*} -1 < x_1 < 1 \\ x_2 < -\sqrt{1 - x_1^2} \end{align*} \]
The tree of cells

\[\mathbb{R}^0\]

\[C_{-\infty} \quad C_{-1} \quad C_0 \quad C_1 \quad C_{+\infty}\]

\[\{\{-1\} \times \] -\infty, 0[\}

\[\{(-1, 0)\}\]

\[\{\{-1\} \times 0, +\infty[\]

\[\vdots\]

\[\{\{-1\} \times \)0, +\infty[\times \mathbb{R}\]

\[C_{-\infty} \times \mathbb{R}^2\]

\[\vdots\]

\[C_{+\infty} \times \mathbb{R}^2\]
Building the quotient

partially, for A_3, using the sphere case with some refinements:

\[x_1^2 + x_2^2 < 1 \]

\[0 < x_1 < 1 \]
\[x_1 := 0 \]

\[0 < x_1 < 1 \]

\[x_1^2 + x_2^2 + x_3^2 \geq 1 \]
Building the quotient

partially, for A_3, using the sphere case with some refinements:

\[q_0, 0 < x_1 < 1, \]
\[0 < x_1 < 1, \]
\[x_1^2 + x_2^2 + x_3^2 \geq 1, \]
\[x_1^2 + x_2^2 < 1, \]
\[q_0, R_0 = (x_1 = 0), R_1 = (0 < x_1 < 1), \]
Building the quotient

partially, for A_3, using the sphere case with some refinements:

level 1: $R_0 = (x_1 = 0)$, $R_1 = (0 < x_1 < 1)$,

level 2 above R_1: $R_{10} = (R_1, x_2 = 0)$, $R_{11} = (R_1, 0 < x_2 < \sqrt{1 - x_1^2})$,
Building the quotient

partially, for A_3, using the sphere case with some refinements:

level 1: $R_0 = \left(x_1 = 0 \right)$, $R_1 = \left(0 < x_1 < 1 \right)$,
level 2 above R_1: $R_{10} = \left(R_1, x_2 = 0 \right)$, $R_{11} = \left(R_1, 0 < x_2 < \sqrt{1 - x_1^2} \right)$,
level 3 above R_{11}: $R_{110} = \left(R_{11}, x_3 = 0 \right)$, $R_{111} = \left(R_{11}, 0 < x_3 < \sqrt{1 - x_1^2 - x_2^2} \right)$,
$R_{112} = \left(R_{11}, x_3 = \sqrt{1 - x_1^2 - x_2^2} \right)$, $R_{113} = \left(R_{11}, x_3 > \sqrt{1 - x_1^2 - x_2^2} \right)$,
Building the quotient partially, for A_3, using the sphere case with some refinements:

\[q_0 < x_1 < 1 \]
\[x_1 := 0 \]
\[0 < x_1 < 1 \]
\[x_1^2 + x_2^2 + x_3^2 \geq 1 \]
\[x_1^2 + x_2^2 < 1 \]

Level 1: $R_0 = (x_1 = 0)$, $R_1 = (0 < x_1 < 1)$,
Level 2 above R_1: $R_{10} = (R_1, x_2 = 0)$, $R_{11} = (R_1, 0 < x_2 < \sqrt{1 - x_1^2})$,
Level 3 above R_{11}: $R_{110} = (R_{11}, x_3 = 0)$, $R_{111} = (R_{11}, 0 < x_3 < \sqrt{1 - x_1^2 - x_2^2})$,
$R_{112} = (R_{11}, x_3 = \sqrt{1 - x_1^2 - x_2^2})$, $R_{113} = (R_{11}, x_3 > \sqrt{1 - x_1^2 - x_2^2})$,
and back to level 1
Effective construction: Elimination

From an initial set of polynomials, the elimination phase produces in 2EXPTIME a family of polynomials $\mathcal{P} = \{\mathcal{P}_k\}_{k \leq n}$ with $\mathcal{P}_k \subseteq \mathbb{Q}[x_1, \ldots, x_k]$ for level k.

Some polynomials do not have always the same degree and roots. For instance, $B = (2x_1 - 1)x_2^2 - 1$ is of degree 2 in x_2 if and only if $x_1 \neq \frac{1}{2}$.

For A_2

Starting from $\{x_1, A\}$ and $\{x_2, B, C\}$ with $A = x_1^2 - x_1 - 1$ and $C = x_2 + x_1^2 - 5$ results in

- $\mathcal{P}_1 = \{x_1, A, D, E, F, G\}$,
- $\mathcal{P}_2 = \{x_2, B, C\}$,

with $D = 2x_1 - 1$, $E = x_1^2 - 5$, $F = -2x_1^5 + x_1^4 + 20x_1^3 - 10x_1^2 - 50x_1 + 26$, $G = 4(2x_1 - 1)^2$.
Effective construction: Lifting

To build the tree of cells in the lifting phase, we need a suitable representation of the roots of these polynomials (and the intervals between them), obtained by iteratively increasing the level.

A description like \(x_3 > \sqrt{1 - x_1^2 - x_2^2} \) cannot be obtained in general.

- A point is coded by “the \(n^{th} \) root of \(P \)”.
- The interval \([n, P), (m, Q)\] is coded by a root of \((PQ)'\).

This lifting phase can be performed on-the-fly, producing only the reachable part of the quotient automaton \(R_A \).
Conclusion

In the class PolITA

- Reachability is decidable in 2EXPTIME.
- Parameters can be included as ordinary variables!

Experiments

were produced by Rémi Garnier and Mathieu Huot (L3 students of ENS Cachan) who developed a prototype.

Future work

Extension to o-minimal decidable theories.
Conclusion

In the class PolITA

- Reachability is decidable in 2EXPTIME.
- Parameters can be included as ordinary variables!

Experiments

were produced by Rémi Garnier and Mathieu Huot (L3 students of ENS Cachan) who developed a prototype.

Future work

Extension to o-minimal decidable theories.

Thank you