PRUNING NESTED-DFS FOR PARAMETRIC TIMED AUTOMATA

LAURE PETRUCCI & JACO VAN DE POL CNRS/LIPN, PARIS 13 DEPT. OF CS, AARHUS

PARAMETRIC TIMED AUTOMATA

X <= C

x>d

y:=0

ALUR, HENZINGER, VARDI [STOC 1993]

Design of real-time systems

- Locations, transitions
- Clocks
 - Guards
 - Invariants
 - Resets
- Parameters

Networks of PTA (as in Imitator)

- Communicating automata
- Discrete variables
- Urgent locations

7 APRIL 2019

Analysis and Synthesis

- **Reachability of locations**
 - For all parameters
 - Synthesise correct parameters
 - Synthesise optimal parameters [TACAS 2019! Bloemen et al.]
- Safety and Liveness properties (LTL)
 - Parametric verification
 - Synthesise correct parameters
- Note: everything is undecidable...

SYNCOP JACO VAN DE POL PROFESSOR

BOUNDED RETRANSMISSION PROTOCOL

SYMBOLIC ZONE GRAPH

Semantics of Timed Automata:

 Timed Transition System (uncountably infinite)

Finite abstraction:

- Zone Automaton (extrapolation)
- Efficient DBM representation (x-y < 3)

PTA case:

- Parametric Zone Graph (PZG): (t, Z)
- Representation: Polyhedra
- Projection: Parametric Constraint ($Z \downarrow_P$)
- Note: PZG can become infinite

SYNCOP JA 7 APRIL 2019 PF

P JACO VAN DE POL 9 PROFESSOR

LINEAR-TIME TEMPORAL LOGIC

AMIR PNUELI [1977], COURCOUBETIS, VARDI, WOLPER, YANNAKAKIS [FMSD 1992]

LTL properties:

- Properties on execution paths through the system
- Expressivity: safety and liveness properties
- We restrict to properties over transition labels

Method:

- 1. Take the negation of the LTL property
- 2. Transform it into a Büchi Automaton (in Spot)
- 3. Add this automaton as a component in Imitator

Correctness:

- Every infinite run through the product is:
 - \checkmark An infinite run in the original system
 - \checkmark An infinite run through the Büchi automaton
- Accepting runs = counter examples
- No accepting runs = LTL property holds

NESTED DEPTH-FIRST SEARCH

dfsred(s):

dfsblue(s): s.color1 := cyan for t in s.next do if t.color1 == white then dfsblue(t) if s.accepting then dfsred(s) s.color1 := blue

s.color2 := red for t in s.next do if t.color1==cyan then CYCLE if t.color2 == white then dfsred(t)

SYNCOP 7 APRIL 2019

DP JACO VAN DE POL 19 PROFESSOR

SUBSUMPTION AND LTL FOR TIMED AUTOMATA

ALFONS LAARMAN, MADS OLESEN, ANDREAS DALSGAARD, KIM LARSEN, JVDP [CAV 2013]

Zone abstraction $(l,Z_1) \sqsubseteq (l,Z_2)$ if $Z_1 \subseteq Z_2$

Subsumption is:

- Sound for reachability
- Unsound for liveness:
 - Introduces cycles! •

Theorem: an accepting cycle on *s* can be always be simulated by an accepting cycle on $s' \supseteq s$

SYNCOP 7 APRIL 2019 PROFESSOR

JACO VAN DE POL

PRUNING NDFS WITH SUBSUMPTION

dfsblue(s): s.color1 := cyan for t in s.next do if t.color 1 == white & $\exists r.t \sqsubseteq r \in Red$ then dfsblue(t) if saccepting then dfsred(s) s.color1 := blue

dfsred(s): s.color2 := red for t in s.next do if $\exists r.t \supseteq r \in Cyan$ then **CYCLE** if $\exists r. t \sqsubseteq r \in Red$ $\& t \downarrow_p = s \downarrow_p$ then dfsred(t)

Notes:

- If in the red search we encounter a state that subsumes a cyan state, then we can already report
 - an accepting cycle

 If we encounter a state that is subsumed by a red state, we can backtrack, since we would not find a new cycle

 We can restrict the red search to the same layer, since parameters can never increase again

SYNCOP 7 APRIL 2019

JACO VAN DE POL PROFESSOR

OPPORTUNITIES FOR PRUNING NESTED-DFS

BEZDEK, BENES, BARNAT, CERNÁ [SEFM 2016], GIA NGUYEN, LAURE PETRUCCI, JVDP [ICECCS 2018]

Prune using the collected constraints [collecting]

- Assume: so far we found parametric constraints C
- Assume: current state's parametric constraint s is subsumed by C
- → search from s will not contribute to C

Prune or prioritize based on decreasing parametric constraint [layered]

- Assume: parametric constraint strictly decreases along some transition
- ightarrow this transition cannot be on a cycle: abort the red search
- \rightarrow safe to postpone this transition in blue search: layering algorithm

Prune based on subsumption by previous states [subsumption]

- ightarrow prune blue search on states that are subsumed by red states
- \rightarrow prune red search on states that subsume cyan states (spiral \rightarrow cycle)

COLLECTING AND LAYERED NDFS

dfsblue(s): if $\neg s \downarrow_p \sqsubseteq \text{Constr}$ s.color1 := cyan for t in s.next do if $t \downarrow_p \sqsubset s \downarrow_p$ then Pending += t else if t.color1 == white & $\exists r, t \sqsubseteq r \in Red$ then dfsblue(t) if s.accepting then dfsred(s) s.color] := blue

AARHUS UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE dfsred(s): s.color2 := red for t in s.next do if $\exists r. t \supseteq r \in Cyan$ then Constr += t \downarrow if $\nexists r. t \sqsubseteq r \in Red$ $\& t \downarrow_p = s \downarrow_p$ then dfsred(t)

Main loop:

while s from Pending:

dfsblue(s)

SYNCOPJACO VAN DE POL7 APRIL 2019PROFESSOR

Notes:

- We collect **all constraints** that lead to an accepting cycle
- We can prune states contained in the constraint, since they cannot contribute to the constraint
 - Heuristic: all states in the next parametric layer can be safely postponed in the pending list

10

OTHER SEARCH STRATEGIES

HERBRETEAU, SRIVATHSAN, TRAN, WALUKIEWICZ [FSTTCS 2016], ÉTIENNE ANDRÉ, GIA NGUYEN, LAURE PETRUCCI [ICECCS 2017]

Search strategy matters for effective subsumption

- BFS tends to find "large" zones earlier
 - Priority queue for frontier of next states
- For NDFS:
 - at least reorder successor states
 - for layered NDFS: reorder the Pending set

Abstraction & Refinement

- Search accepting cycles in abstract PZG
- No cycles: LTL formula holds
- Cycle found? Refine search (per SCC)

IMITATOR BENCHMARK

(ICECCS 2018)

EC Algorithms					nithus	STATESPACE Algorithms			
Benchmark	#	#	#		ECc-	EX	ECCYCLES		STATESPACE
Models	X	P	T	NDFS (s)	NDFSSUB (s)	LAYERNDFSSUB	LAYERCOLLECTNDFSSUB (s)	#Zones	D TS PRIOR incl (s)
BRP	7	2	22	0.021	0.237	0.035	0.043	4	176.535
coffee	2	3	4	ТО	ТО	0.008	10	2	0.006
critical-region	2	2	20	ТО	TO	ТО	ТО	0	ТО
F3	3	0	1	0.026	0.026	0.000	0.003	1	0.255
F4	4		23	ТО	ТО	0.007	0.006	1	ТО
FDDI4	13	2	34	0.205	0.235		7.004	136	1.319
FischerAHV93	2	4	13	0.010	0.009	0.013	0.013	1	0.040
flipflop	5	2	52	0.010	0.010	0.010	0.012	1	0.015
fmtv1A1-v2	3	3	15	0.060	0.057	46.723	68.223	29	14.040
fmtv1A3-v2	3	3	15	0.063	0.062	302.061	1129.284	67	215.020
JLR13	2	2	2	ТО	ТО	ТО	ТО	0	ТО
lynch	2	1	18	0.007	0.007	0.010	0.010	5	0.016
lynch5	5	1	45	0.012	0.012	0.016	0.019	9	3.126
Pipeline-KP12-2-3	4	6	14	0.510	0.508	7.738	492.995	369	ТО
Pipeline-KP12-2-5	4	6	1	0.791	0.787	ТО	ТО	0	ТО
Pipeline-KP12-3-3	5	6	15	1.960	1.962	ТО	ТО	0	ТО
RCP	6	5	48	0.024	0.012	0.023	0.034	7	10.095
Sched2.50.0	6	2	17	0.011	0.011	0.539	4.168	71	1.940
Sched2.50.2	6	2	17	0.011	0.011	ТО	ТО	0	ТО
Sched2.100.0	6	2	17	0.008	0.008	0.417	3.769	31	2.425
Sched2.100.2	6	2	17	0.008	0.008	ТО	ТО	0	ТО
simop	8	2	46	ТО	ТО	ТО	ТО	0	ТО
spsmall	11	2	51	0.244	0.053	0.310	36.549	1026	5.650
train-gate	5	9	11	0.016	0.015	0.047	0.268	15	0.018
WFAS	4	2	10	0.023	0.021	0.056	ТО	13	ТО

Table 1. EXPERIMENTAL COMPARISON OF NESTED DFS ALGORITHMS

DEPARTMENT OF COMPUTER SCIENCE

AARHUS

UNIVERSITY

JACO VAN DE POL SYNCOP 7 APRIL 2019 PROFESSOR

NEW RESULTS ON IMITATOR BENCHMARKS

	NDFS sub	NDFS layer	NDFS collect	Layers + Pruning
Critical	XXX	XXX	XXX	Solved!!
F4	XXX	0.007	0.006	Solved!!
JLR13	XXX	XXX	XXX	Solved!!
Sched2.50.2	0.011	XXX	XXX	XXX

Relatively simple ideas:

- Giving priority to accepting successors
- Checking for self-loops
- Handling "early termination" cases
 - Cyan successor is accepting

RESULTS ON BRP: REACHABILITY

- Imitator (with -incl and -merge) can easily generate constraints for timing parameters
- Imitator cannot handle discrete parameters like "number of retries", "length of message"
- → sharper bounds than in original paper [d'Argenio, TACAS 1997]

Original constraints: T1 > 2.TD && SYNC >= TR > 2.MAX.T1 + 3.TD

Instantiated for MAX=2: T1 > 2.TD && SYNC >= TR > 4.T1 + 3.TD (1)

Imitator result (MAX=2): T1 > 2.TD && SYNC + T1 >= TR + TD && TR > 4.T1 + 3.TD (2)

Note: (1) implies (2), but (2) does not imply (1), so Imitator found more solutions

AARHUS UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

RESULTS ON BRP: REACHABILITY BY LTL

- All old approaches fail
 - NDFS + subsumption / collecting / layering: cannot handle the simplest case
- NDFS + subsumption + dedicated pruning: finds some constraints
- NDFS + abstraction refinement: finds more constraints (maybe all)
 - 1. Run NDFS on full subsumption (unsound for counter-examples)
 - 2. Confirm found counter-examples
 - 3. Add negation of found constraints to the initial state, and rerun the procedure
- On arbitrary LTL formulas (e.g. **GF** S_in): currently unsuccessful...

CONCLUSION

Herbretau et al.: LTL model checking for TAs is inherently harder than Reachability

The reachability problem for PTAs is already undecidable

What can we expect?

- We have improved search space pruning
- We can still explore more search order heuristics (like layering, priorities, BMC)
- We will further explore Abstraction Refinement, including acceleration techniques

Currently, Bounded Retransmission Protocol as a (modest) challenge

