
DEPARTMENT OF COMPUTER SCIENCE
7 APRIL 2019 PROFESSOR

SYNCOP JACO VAN DE POLAARHUS
UNIVERSITY

PRUNING NESTED-DFS FOR
PARAMETRIC TIMED AUTOMATA

LAURE PETRUCCI & JACO VAN DE POL
CNRS/LIPN, PARIS 13 DEPT. OF CS, AARHUS

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PARAMETRIC TIMED AUTOMATA
ALUR, HENZINGER, VARDI [STOC 1993]

 Design of real-time systems

 Locations, transitions

 Clocks

 Guards

 Invariants

 Resets

 Parameters

Networks of PTA (as in Imitator)

 Communicating automata

 Discrete variables

 Urgent locations

2

 Analysis and Synthesis

 Reachability of locations

 For all parameters

 Synthesise correct parameters

 Synthesise optimal parameters
[TACAS 2019! Bloemen et al.]

 Safety and Liveness properties (LTL)

 Parametric verification

 Synthesise correct parameters

 Note: everything is undecidable…

x <= c
x>d

y:=0

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

BOUNDED RETRANSMISSION PROTOCOL
PEDRO D’ARGENIO, JOOST-PIETER KATOEN, THEO RUYS, JAN TRETMANS [TACAS 1997]

3

Sender Receiver
Lossy

Channel
(TD sec)

Sin
Sok
Sdk
Snok

sndD

rcvA sndA

rcvD

Rfst
Rinc
Rok
Rnok

Timing Parameters:
• TD: max delivery channel
• TS: waiting time Sender
• TR: waiting time Receiver
• SYNC: Sender catch up

Clocks:
• x: sender
• z: receiver

Bits:
• b1, bN: first/last
• ab: alternating bit

Integers:
• i: frame number
• rc: # retries

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

SYMBOLIC ZONE GRAPH
 Semantics of Timed Automata:

 Timed Transition System
(uncountably infinite)

Finite abstraction:

 Zone Automaton (extrapolation)

 Efficient DBM representation (x-y < 3)

PTA case:

 Parametric Zone Graph (PZG): (t, 𝑍)

 Representation: Polyhedra

 Projection: Parametric Constraint (𝑍 ↓)

 Note: PZG can become infinite

4

x <= c
x>d

y:=0

x = y &
x <= c

x > d &
d <= c &
x-y > d

True d<=c

PTA:

PZG:

PC:

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

 LTL properties:

 Properties on execution paths through the system

 Expressivity: safety and liveness properties

 We restrict to properties over transition labels

Method:

1. Take the negation of the LTL property

2. Transform it into a Büchi Automaton (in Spot)

3. Add this automaton as a component in Imitator

Correctness:

 Every infinite run through the product is:

 An infinite run in the original system

 An infinite run through the Büchi automaton

 Accepting runs = counter examples

 No accepting runs = LTL property holds

LINEAR-TIME TEMPORAL LOGIC
AMIR PNUELI [1977], COURCOUBETIS, VARDI, WOLPER, YANNAKAKIS [FMSD 1992]

5

Büchi automaton
for the negation

GF S_in

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

NESTED DEPTH-FIRST SEARCH

 dfsblue(s):

s.color1 := cyan

for t in s.next do

if t.color1 == white

then dfsblue(t)

if s.accepting

then dfsred(s)

s.color1 := blue

6

Blue search

Accepting states

Bug found!

Red search

 dfsred(s):

s.color2 := red

for t in s.next do

if t.color1==cyan

then CYCLE

if t.color2 == white

then dfsred(t)

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

SUBSUMPTION AND LTL FOR TIMED AUTOMATA
ALFONS LAARMAN, MADS OLESEN, ANDREAS DALSGAARD, KIM LARSEN, JVDP [CAV 2013]

7

(,) (,) if

Theorem: an accepting cycle on
can be always be simulated by an
accepting cycle on

Subsumption is:
• Sound for reachability
• Unsound for liveness:

• Introduces cycles!

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PRUNING NDFS WITH SUBSUMPTION

8

 dfsblue(s):

s.color1 := cyan
for t in s.next do

if t.color1 == white

&

then dfsblue(t)

if s.accepting

then dfsred(s)

s.color1 := blue

 dfsred(s):

s.color2 := red
for t in s.next do

if
then CYCLE

if
& 𝒑= 𝒑

then dfsred(t)

Notes:
• If in the red search we

encounter a state that
subsumes a cyan state,
then we can already report
an accepting cycle

• If we encounter a state that
is subsumed by a red state,
we can backtrack, since we
would not find a new cycle

• We can restrict the red
search to the same layer,
since parameters can
never increase again

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

OPPORTUNITIES FOR PRUNING NESTED-DFS
BEZDEK, BENES, BARNAT, CERNÁ [SEFM 2016], GIA NGUYEN, LAURE PETRUCCI, JVDP [ICECCS 2018]

 Prune using the collected constraints [collecting]

• Assume: so far we found parametric constraints C

• Assume: current state’s parametric constraint s is subsumed by C

• search from s will not contribute to C

Prune or prioritize based on decreasing parametric constraint [layered]

• Assume: parametric constraint strictly decreases along some transition

• this transition cannot be on a cycle: abort the red search

• safe to postpone this transition in blue search: layering algorithm

Prune based on subsumption by previous states [subsumption]

• prune blue search on states that are subsumed by red states

• prune red search on states that subsume cyan states (spiralcycle)

9

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

COLLECTING AND LAYERED NDFS

10

 dfsblue(s):

 if 𝒑 Constr

s.color1 := cyan

for t in s.next do
if 𝒑 𝒑

then Pending += t
else if t.color1 == white

&

then dfsblue(t)

if s.accepting

then dfsred(s)

s.color1 := blue

 dfsred(s):

s.color2 := red

for t in s.next do
if

then Constr += 𝒑

if

& 𝒑= 𝒑

then dfsred(t)

Main loop:
while s from Pending:

dfsblue(s)

Notes:

• We collect all constraints
that lead to an accepting
cycle

• We can prune states
contained in the constraint,
since they cannot contribute
to the constraint

• Heuristic: all states in the
next parametric layer can
be safely postponed in the
pending list

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

OTHER SEARCH STRATEGIES
HERBRETEAU, SRIVATHSAN, TRAN, WALUKIEWICZ [FSTTCS 2016], ÉTIENNE ANDRÉ, GIA NGUYEN, LAURE PETRUCCI [ICECCS 2017]

 Search strategy matters for effective subsumption

 BFS tends to find “large” zones earlier

 Priority queue for frontier of next states

 For NDFS:

 at least reorder successor states

 for layered NDFS: reorder the Pending set

Abstraction & Refinement

 Search accepting cycles in abstract PZG

 No cycles: LTL formula holds

 Cycle found? Refine search (per SCC)

11

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

IMITATOR BENCHMARK (ICECCS 2018)

12

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

NEW RESULTS ON IMITATOR BENCHMARKS

NDFS sub NDFS layer NDFS collect Layers + Pruning

Critical XXX XXX XXX Solved!!

F4 XXX 0.007 0.006 Solved!!

JLR13 XXX XXX XXX Solved!!

Sched2.50.2 0.011 XXX XXX XXX

13

Relatively simple ideas:

 Giving priority to accepting successors

 Checking for self-loops

 Handling “early termination” cases

 Cyan successor is accepting

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

RESULTS ON BRP: REACHABILITY

 Imitator (with –incl and –merge) can easily generate constraints for timing parameters

 Imitator cannot handle discrete parameters like “number of retries”, “length of message”

 sharper bounds than in original paper [d’Argenio, TACAS 1997]

Original constraints: T1 > 2.TD && SYNC >= TR > 2.MAX.T1 + 3.TD

 Instantiated for MAX=2: T1 > 2.TD && SYNC >= TR > 4.T1 + 3.TD (1)

 Imitator result (MAX=2): T1 > 2.TD && SYNC + T1 >= TR + TD && TR > 4.T1 + 3.TD (2)

 Note: (1) implies (2), but (2) does not imply (1), so Imitator found more solutions

14

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

RESULTS ON BRP: REACHABILITY BY LTL

 All old approaches fail

 NDFS + subsumption /collecting / layering: cannot handle the simplest case

 NDFS + subsumption + dedicated pruning: finds some constraints

 NDFS + abstraction refinement: finds more constraints (maybe all)

1. Run NDFS on full subsumption (unsound for counter-examples)

2. Confirm found counter-examples

3. Add negation of found constraints to the initial state, and rerun the procedure

 On arbitrary LTL formulas (e.g. GF S_in): currently unsuccessful…

15

SYNCOP JACO VAN DE POL

7 APRIL 2019 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

CONCLUSION

 Herbretau et al.: LTL model checking for TAs is inherently harder than Reachability

 The reachability problem for PTAs is already undecidable

 What can we expect?

 We have improved search space pruning

 We can still explore more search order heuristics (like layering, priorities, BMC)

 We will further explore Abstraction Refinement, including acceleration techniques

Currently, Bounded Retransmission Protocol as a (modest) challenge

16

AARHUS
UNIVERSITY

