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Motivation

Motivation

Matrix operations

e Addition, transposition, matrix multiplication
@ Row operations, submatrix
@ Diagonal matrix, triangular matrix, identity matrix, orthogonal matrix

@ Determinant, eigenvalues, eigenvectors
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Motivation

Motivation

Matrix operations

e Addition, transposition, matrix multiplication
@ Row operations, submatrix
e Diagonal matrix, triangular matrix, identity matrix, orthogonal matrix

@ Determinant, eigenvalues, eigenvectors

Decompositions

e QR, LU, Cholesky
o TSQR: iterative methods use it

@ Linear systems with multiple right-hand sides
o Block iterative eigensolvers
o s-step Krylov methods
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Motivation

Motivation

Fault tolerance in HPC

@ System-level

e Transparent for the application
e Specific middleware to ensure coherent state of the application

@ Application-level

e The application itself handles the failures and adapt to them
o The middleware must be robust enough to provide primitives
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Introduction
High Performance Computing

High Performance Systems

Platforms at large scale

@ Have their own technical challenges

e The total number of hardware and software components grows
exponentially

o Platforms needed to manage and handle complex computational
problems

e Hardware or software failures may occur anytime during the execution
of high parallel applications
@ System reliability, availability and scalability are factors to deal with
o Failures may result in a high execution times and high cost
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Introduction

High Performance Computing

Top500.org

@ A statistical list with ranks and details of the 500 world’s most
powerful supercomputers

@ It shows that performance has almost doubled each year

Power
(kW)

Rmax
(TFlop/s)

Rpeak

Rank System ‘ Cores ‘ (TFlop/s)

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United
States
Sierra - IBM Power System $922LC, IBM POWER9 22C 3.1GHz,
2 NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / 1,572,480 | 94,640.0 125,712.0 | 7,438
NVIDIA / Mellanox DOE/NNSA/LLNL United States
Sunway TaihulLight - Sunway MPP, Sunway SW26010 260C

2,397,824 | 143,500.0 | 200,794.9 | 9,783

3 1.45GHz, Sunway , NRCPC National Supercomputing Center in 10,649,600, 93,014.6 125,435.9 | 15,371
Wouxi China
Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C
4 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super 4,981,760 61,444.5 100,678.7 | 18,482

Computer Center in Guangzhou China
Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries
5 interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National 387,872 21,230.0 27,154.3 2,384
Supercomputing Centre (CSCS) Switzerland
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Introduction
Fault Tolerance

Failures

Failures in High Performance Systems

@ Node increase in HPC = platforms more subject to failures

e Mean Time Between Failures (MTBF): measure of system reliability
o Defined as the probability that the system performs without deviations
from agreed-upon behavior for a specific period of time

n—1
1
MTBFr = (3 g
i=0 !

o Failures arise anytime
e Stops partially or totally the execution (crash-type failures)
e Provides incorrect results (bit errors)
@ With an increase in the number of components, the system will
experience a component failure every few hours or even minutes
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Introduction
Fault Tolerance

Fault tolerance

Challenges in HPC

e HPC algorithms should be designed to:
e expect failures: very difficult to predict all possible failures
o take suitable actions: ensure that intensive applications run smoothly
with reduced overhead

@ Fault tolerant solutions are being incorporated

e Have the ability to contain failures
e Minimize the impact of failures

@ Provide a fault tolerant environment
e Enhance the utilization of the system at high scale
e Ensure the failure-free execution of critical algorithms
@ Hard to describe and verify the system's properties: how to simplify
it?
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Introduction
Formal Models

Formal models

Coloured Petri Nets (CPN)

@ Better understanding of the system

@ The system ensures mathematically that it is correct

@ Modelling, validating properties and synchronizing communications of
parallel and distributed algorithms

@ Allow for better readability and understandability

4

FT-TSQR Formal Model

Formal model and associated verifications

@ Proves it tolerates the failures
@ Guarantees that the final results are correct

o Data flow is correct
e Each process calculates and shares its results
o At the end, all the process have the same result
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The FT-TSQR algorithm
TSQR

Los Tres Amigos

QR factorization: A= QR ﬁ
e R upper triangular
e (@ orthogonal

LU decomposition: A= LU @
e [ lower triangular
e U upper triangular

Cholesky factorization: A= LLT il
e A symmetric, positive definite
e [ lower triangular
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TSQR
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Tall and Skinny QR

Tall and Skinny QR (TSQR) Factorisation
@ It calculates the QR factorisation of a tall and skinny matrix A, i.e. a
matrix with m rows and n columns, m > n

@ Linear algebra applications depend on the algorithm:
e Ax=0>

e numerically stable: eigenvalues computation is sensitive to the
accuracy of the orthogonalization
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR
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The FT-TSQR algorithm
FT-TSQR
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR
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The FT-TSQR algorithm
FT-TSQR
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The FT-TSQR algorithm
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The FT-TSQR algorithm
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The FT-TSQR algorithm

FT-TSQR

Fault-Tolerant TSQR
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes data redundancy

QR QR

Po
Py

P>

P E-RMN

/ if a process fails, there exists another process:
doing the same operation holding the same data
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure
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The FT-TSQR algorithm
FT-TSQR
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The FT-TSQR algorithm
FT-TSQR
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure
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The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

P

=

P>




Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

The algorithm

Algorithm 1: FT-TSQR

Data: Submatrix A
1 Q, R =Qr(A);

2 s=0;

3 while !/ done() do

4 pi = myPartner(s) ;
5 f = sendRecv(R, R/, p;) :
6 if FAIL == f then
7 return;
8 A = concatenate(R, R');
9 Q. R = qr(A);
0 | s=s+1;
/* All the surviving processes reach this point and own the final R */

11 return R;
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Model

The model

> 0<q<:(9,0,9) Q

Processes
PROCXINTx PROC

contains triples (q, s, k)
g: a process number
s: the current step
k: index of the R; matrix
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Model

The model

finds a partner process ¢’
executes a step of the algorithm

compute
[Jlg+2°—q mod 2°71 < ¢’ < g+2°t1 — g mod 2571
AR = min(k, k)]

> 0<q<:(9,0,9) Q

Processes
PROCXINTx PROC

contains triples (q, s, k)
g: a process number
s: the current step
k: index of the R; matrix
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Model

The model

finds a partner process ¢’
executes a step of the algorithm

compute
[ J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

Zogq«(q# 0,q9)
Processes
PROCXINTx PROC

contains triples (q, s, k)
g: a process number
s: the current step
k: index of the R; matrix
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finds a partner process ¢’
executes a step of the algorithm

compute
[ J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail
> 0<q<(9,0,9) 2 0<s<[log, £](5:2° — 1)
Processes
PROCXINTx PROC

contains triples (q, s, k)
g: a process number
s: the current step
k: index of the R; matrix

contains pairs (s, f)
s: the current step
f: number of failures still allowed at step s
limits the number of occurrences of transition failure
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Model

The model

finds a partner process ¢’
executes a step of the algorithm

compute
[ J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail
Zogq<r(5h 0,q) ZogsgﬂogQ ﬂ(sv 2°-1)
Processes
PROCXINTx PROC

contains triples (q, s, k) contains pairs (s, f)

g: a process number []If > 0] s: the current step

s: the current step p f: number of failures still allowed at step s

; = . failure o o .
k: index of the R; matrix limits the number of occurrences of transition failure

decreases the number of allowed failures
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Model

The model

finds a partner process ¢’
executes a step of the algorithm

compute
[ J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail

Zogq<r(5h 0,q) ZogsgﬂogQ ﬂ(sv 2°-1)

Processes
PROCXINTx PROC

contains triples (q, s, k) contains pairs (s, f)
g: a process number s: the current step
s: the current step failure f: number of failures still allowed at step s

k: index of the R; matrix limits the number of occurrences of transition failure

decreases the number of allowed failures
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Model

The model

finds a partner process ¢’

moves a process to the next step executes a step of the algorithm

nop compute
l[g+25>1][] [ J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail

Zogq<r(5h 0,q) ZogsgﬂogQ ﬂ(sv 2°-1)

Processes
PROCXINTx PROC

contains triples (q, s, k) contains pairs (s, f)
g: a process number s: the current step
s: the current step failure f: number of failures still allowed at step s

k: index of the R; matrix limits the number of occurrences of transition failure

decreases the number of allowed failures
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Model

The model

finds a partner process ¢’

moves a process to the next step executes a step of the algorithm

nop compute
[g+2°>t][ ] 3 [ J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail

Zogq<r(5h 0,q) ZogsgﬂogQ ﬂ(sv 2°-1)

Processes
PROCXINTx PROC

contains triples (q, s, k) contains pairs (s, f)
g: a process number s: the current step
s: the current step failure f: number of failures still allowed at step s

k: index of the R; matrix limits the number of occurrences of transition failure

decreases the number of allowed failures
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Properties

Properties

The system can reach the end of the computation (prop. 1)

The final result is unique and is the expected one (prop. 2)

Projection functions

e [1,: select the xth element of a token which has a tuple value
o [, ,: select the xth and yth elements to form a pair

I3 denotes the value of 1, when the step number is s




Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Properties

Properties

Property 1

At every step s > 0, the system can tolerate at most 2° — 1 failures

@ When s = 0 each process performs a local computation

@ When s > 0 transition compute takes the R and R’ from two processes g and q’ and
produces R’" on both g and q’ or transition failure consumes a process
@ By recursion, at each step s > 0, VM € [Mp >, it holds that:

|[N3(M(Processes))| + M3 (M(MaxFail)) = 2° < invariant

At each step, the number of process with the same information increases by 2
@ The guard on transition failure ensures:

0 < N3(M(MaxFail)) < 2° — 1

@ 1 < |M§(M(Processes))| < 2°: at least one process holds each intermediate R

.
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Properties

Properties

Property 2

At the end of the computation, if the system did not suffer too many
failures, at least one process holds the final R

@ From property 1, when s > 0: [M5(M(Processes))| > 1

o For each R: |M5(M(Processes))| 4 M§(M(MaxFail)) = 2
o 0 < My(M(MaxFail)) < 2° — 1

@ When s = log, t: the algorithm reaches the final step
o |M3(M(Processes))| + M5(M(MaxFail)) = t
@ Then, all non-failed processes hold the same R = R is unique and is the final R
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Conclusion and perspectives

Conclusion and perspectives

Conclusions

@ A formal model for a fault tolerant algorithm

e How the failures are modelled
e Design of proofs of fault tolerance properties

@ Number of processes, size of the matrix: parameters of the model
e The proof holds for any value of the parameters

”
Perspectives

@ How to derive a general modelling and verification approach for:

o fault tolerant algorithms?

@ square matrices?

o the Trailing Matrix Update?
@ Maximum number of errors allowed?
@ Improvements

e choosing among more partners?
e recovery after failure: handled by a spawned node, an inactive one?

.
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