Daniel Torres It-tolerant matrix factorisation: a formal model and proof

Fault-tolerant matrix factorisation: a formal model and
proof

Camille Coti, Laure Petrucci, Daniel Alberto Torres Gonzalez

Laboratoire d'Informatique de Paris Nord, CNRS UMR 7030,
Université Paris 13, Sorbonne Paris Cité
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE

camille.coti®@lipn.univ-paris13.fr
laure.petrucci®@lipn.univ-paris13.fr
daniel.torres@lipn.univ-paris13.fr

April 6, 2019

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof

Content

@ Motivation

© Introduction
@ High Performance Computing
o Fault Tolerance
@ Formal Models

e The FT-TSQR algorithm
e TSQR
e FT-TSQR

Q Model

© Properties

@ Conclusion and perspectives

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Motivation

Motivation

Matrix operations

e Addition, transposition, matrix multiplication
@ Row operations, submatrix
@ Diagonal matrix, triangular matrix, identity matrix, orthogonal matrix

@ Determinant, eigenvalues, eigenvectors

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Motivation

Motivation

Matrix operations

e Addition, transposition, matrix multiplication
@ Row operations, submatrix
e Diagonal matrix, triangular matrix, identity matrix, orthogonal matrix

@ Determinant, eigenvalues, eigenvectors

Decompositions

e QR, LU, Cholesky
o TSQR: iterative methods use it

@ Linear systems with multiple right-hand sides
o Block iterative eigensolvers
o s-step Krylov methods

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Motivation

Motivation

Fault tolerance in HPC

@ System-level

e Transparent for the application
e Specific middleware to ensure coherent state of the application

@ Application-level

e The application itself handles the failures and adapt to them
o The middleware must be robust enough to provide primitives

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof

Introduction
High Performance Computing

High Performance Systems

Platforms at large scale

@ Have their own technical challenges

e The total number of hardware and software components grows
exponentially

o Platforms needed to manage and handle complex computational
problems

e Hardware or software failures may occur anytime during the execution
of high parallel applications
@ System reliability, availability and scalability are factors to deal with
o Failures may result in a high execution times and high cost

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Introduction

High Performance Computing

Top500.org

@ A statistical list with ranks and details of the 500 world’s most
powerful supercomputers

@ It shows that performance has almost doubled each year

Power
(kW)

Rmax
(TFlop/s)

Rpeak

Rank System ‘ Cores ‘ (TFlop/s)

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United
States
Sierra - IBM Power System $922LC, IBM POWER9 22C 3.1GHz,
2 NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / 1,572,480 | 94,640.0 125,712.0 | 7,438
NVIDIA / Mellanox DOE/NNSA/LLNL United States
Sunway TaihulLight - Sunway MPP, Sunway SW26010 260C

2,397,824 | 143,500.0 | 200,794.9 | 9,783

3 1.45GHz, Sunway , NRCPC National Supercomputing Center in 10,649,600, 93,014.6 125,435.9 | 15,371
Wouxi China
Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C
4 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super 4,981,760 61,444.5 100,678.7 | 18,482

Computer Center in Guangzhou China
Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries
5 interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National 387,872 21,230.0 27,154.3 2,384
Supercomputing Centre (CSCS) Switzerland

Fault-tolerant matrix factorisation: a formal model and proof

Daniel Torres

Introduction
High Performance Computing

#1 Cores Number

IN
| #1 Cores Number ——
ho
9
~
IN
S
N
K
©
S
&
"
<
S o
g%
*&
©
S
¥
©
3
~
t t
5000 2001 2002 2003 2004 2005 2006 2007 ZOOBY 2009 2010 2011 2012 2013 2014 2015 2016 201"
ear

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Introduction
Fault Tolerance

Failures

Failures in High Performance Systems

@ Node increase in HPC = platforms more subject to failures

e Mean Time Between Failures (MTBF): measure of system reliability
o Defined as the probability that the system performs without deviations
from agreed-upon behavior for a specific period of time

n—1
1
MTBFr = (3 g
i=0 !

o Failures arise anytime
e Stops partially or totally the execution (crash-type failures)
e Provides incorrect results (bit errors)
@ With an increase in the number of components, the system will
experience a component failure every few hours or even minutes

Daniel Torres
Introduction

Fault Tolerance

MTBF

»
o
=]
]

<
=
Q

Pt
%]
>

97]
Q

<=
=}

Gy
o
17}
(<]
=
=1

fe=]
©

=
o
(]
[}
2

5
[

[aa]
(]

E

[
=]
o]
(3]

=

5000

4000

3000

2000

1000

Fault-tolerant matrix factorisation: a formal model and proof

10 000 H
100 000 H
1000 000 H
10 000 000 H

10 100 1000 10000
Number of components in the system

100000

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Introduction
Fault Tolerance

Fault tolerance

Challenges in HPC

e HPC algorithms should be designed to:
e expect failures: very difficult to predict all possible failures
o take suitable actions: ensure that intensive applications run smoothly
with reduced overhead

@ Fault tolerant solutions are being incorporated

e Have the ability to contain failures
e Minimize the impact of failures

@ Provide a fault tolerant environment
e Enhance the utilization of the system at high scale
e Ensure the failure-free execution of critical algorithms
@ Hard to describe and verify the system's properties: how to simplify
it?

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Introduction
Formal Models

Formal models

Coloured Petri Nets (CPN)

@ Better understanding of the system

@ The system ensures mathematically that it is correct

@ Modelling, validating properties and synchronizing communications of
parallel and distributed algorithms

@ Allow for better readability and understandability

4

FT-TSQR Formal Model

Formal model and associated verifications

@ Proves it tolerates the failures
@ Guarantees that the final results are correct

o Data flow is correct
e Each process calculates and shares its results
o At the end, all the process have the same result

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
TSQR

Los Tres Amigos

QR factorization: A= QR ﬁ
e R upper triangular
e (@ orthogonal

LU decomposition: A= LU @
e [lower triangular
e U upper triangular

Cholesky factorization: A= LLT il
e A symmetric, positive definite
e [lower triangular

Daniel Torres
The FT-TSQR algorithm
TSQR

Fault-tolerant matrix factorisation: a formal model and proof

Tall and Skinny QR

Tall and Skinny QR (TSQR) Factorisation
@ It calculates the QR factorisation of a tall and skinny matrix A, i.e. a
matrix with m rows and n columns, m > n

@ Linear algebra applications depend on the algorithm:
e Ax=0>

e numerically stable: eigenvalues computation is sensitive to the
accuracy of the orthogonalization

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes

Po

Py

P>

P3

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes

P

Py

P>

P g

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes

QR

f R
ho R
b -l

P [-R{M

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes

Po

Py

P>

P3

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes

QR QR

Po

Py

P>

P3

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes

Po

Py

P>

P3

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes

QR QR QR

Po

Py

P>

P3

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm

FT-TSQR

Fault-Tolerant TSQR

t processes data redundancy

QR QR

Po

Py

P>

P3

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR

t processes data redundancy

QR QR

Po
Py

P>

P E-RMN

/ if a process fails, there exists another process:
doing the same operation holding the same data

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

Po

Py

2|

P>

ER

>
&

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

QR

f -
P E-R
P B

PN

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

P

=

P>

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

Fault-Tolerant TSQR Failure

P

=

P>

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
The FT-TSQR algorithm
FT-TSQR

The algorithm

Algorithm 1: FT-TSQR

Data: Submatrix A
1 Q, R =Qr(A);

2 s=0;

3 while !/ done() do

4 pi = myPartner(s) ;
5 f = sendRecv(R, R/, p;) :
6 if FAIL == f then
7 return;
8 A = concatenate(R, R');
9 Q. R = qr(A);
0 | s=s+1;
/* All the surviving processes reach this point and own the final R */

11 return R;

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Model

The model

> 0<q<:(9,0,9) Q

Processes
PROCXINTx PROC

contains triples (q, s, k)
g: a process number
s: the current step
k: index of the R; matrix

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Model

The model

finds a partner process ¢’
executes a step of the algorithm

compute
[Jlg+2°—q mod 2°71 < ¢’ < g+2°t1 — g mod 2571
AR = min(k, k)]

> 0<q<:(9,0,9) Q

Processes
PROCXINTx PROC

contains triples (q, s, k)
g: a process number
s: the current step
k: index of the R; matrix

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Model

The model

finds a partner process ¢’
executes a step of the algorithm

compute
[J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

Zogq«(q# 0,q9)
Processes
PROCXINTx PROC

contains triples (q, s, k)
g: a process number
s: the current step
k: index of the R; matrix

Daniel Torres
Model

The model

Fault-tolerant matrix factorisation: a formal model and proof

finds a partner process ¢’
executes a step of the algorithm

compute
[J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail
> 0<q<(9,0,9) 2 0<s<[log, £](5:2° — 1)
Processes
PROCXINTx PROC

contains triples (q, s, k)
g: a process number
s: the current step
k: index of the R; matrix

contains pairs (s, f)
s: the current step
f: number of failures still allowed at step s
limits the number of occurrences of transition failure

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Model

The model

finds a partner process ¢’
executes a step of the algorithm

compute
[J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail
Zogq<r(5h 0,q) ZogsgﬂogQ ﬂ(sv 2°-1)
Processes
PROCXINTx PROC

contains triples (q, s, k) contains pairs (s, f)

g: a process number []If > 0] s: the current step

s: the current step p f: number of failures still allowed at step s

; = . failure o o .
k: index of the R; matrix limits the number of occurrences of transition failure

decreases the number of allowed failures

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Model

The model

finds a partner process ¢’
executes a step of the algorithm

compute
[J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail

Zogq<r(5h 0,q) ZogsgﬂogQ ﬂ(sv 2°-1)

Processes
PROCXINTx PROC

contains triples (q, s, k) contains pairs (s, f)
g: a process number s: the current step
s: the current step failure f: number of failures still allowed at step s

k: index of the R; matrix limits the number of occurrences of transition failure

decreases the number of allowed failures

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Model

The model

finds a partner process ¢’

moves a process to the next step executes a step of the algorithm

nop compute
l[g+25>1][] [J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail

Zogq<r(5h 0,q) ZogsgﬂogQ ﬂ(sv 2°-1)

Processes
PROCXINTx PROC

contains triples (q, s, k) contains pairs (s, f)
g: a process number s: the current step
s: the current step failure f: number of failures still allowed at step s

k: index of the R; matrix limits the number of occurrences of transition failure

decreases the number of allowed failures

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Model

The model

finds a partner process ¢’

moves a process to the next step executes a step of the algorithm

nop compute
[g+2°>t][] 3 [J[g+2°—q mod 257t < ¢ < g+25t — g mod 271
AR = min(k, k)]

INTXINT
MaxFail

Zogq<r(5h 0,q) ZogsgﬂogQ ﬂ(sv 2°-1)

Processes
PROCXINTx PROC

contains triples (q, s, k) contains pairs (s, f)
g: a process number s: the current step
s: the current step failure f: number of failures still allowed at step s

k: index of the R; matrix limits the number of occurrences of transition failure

decreases the number of allowed failures

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Properties

Properties

The system can reach the end of the computation (prop. 1)

The final result is unique and is the expected one (prop. 2)

Projection functions

e [1,: select the xth element of a token which has a tuple value
o [, ,: select the xth and yth elements to form a pair

I3 denotes the value of 1, when the step number is s

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Properties

Properties

Property 1

At every step s > 0, the system can tolerate at most 2° — 1 failures

@ When s = 0 each process performs a local computation

@ When s > 0 transition compute takes the R and R’ from two processes g and q’ and
produces R’" on both g and q’ or transition failure consumes a process
@ By recursion, at each step s > 0, VM € [Mp >, it holds that:

|[N3(M(Processes))| + M3 (M(MaxFail)) = 2° < invariant

At each step, the number of process with the same information increases by 2
@ The guard on transition failure ensures:

0 < N3(M(MaxFail)) < 2° — 1

@ 1 < |M§(M(Processes))| < 2°: at least one process holds each intermediate R

.

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof

Properties

Properties

Property 2

At the end of the computation, if the system did not suffer too many
failures, at least one process holds the final R

@ From property 1, when s > 0: [M5(M(Processes))| > 1

o For each R: |M5(M(Processes))| 4 M§(M(MaxFail)) = 2
o 0 < My(M(MaxFail)) < 2° — 1

@ When s = log, t: the algorithm reaches the final step
o |M3(M(Processes))| + M5(M(MaxFail)) = t
@ Then, all non-failed processes hold the same R = R is unique and is the final R

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
Conclusion and perspectives

Conclusion and perspectives

Conclusions

@ A formal model for a fault tolerant algorithm

e How the failures are modelled
e Design of proofs of fault tolerance properties

@ Number of processes, size of the matrix: parameters of the model
e The proof holds for any value of the parameters

”
Perspectives

@ How to derive a general modelling and verification approach for:

o fault tolerant algorithms?

@ square matrices?

o the Trailing Matrix Update?
@ Maximum number of errors allowed?
@ Improvements

e choosing among more partners?
e recovery after failure: handled by a spawned node, an inactive one?

.

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
References

References |

@ Camille Coti.

Scalable, robust, fault-tolerant parallel QR factorization.
In Souheil Khaddaj, editor, Distributed Computing and Applications to Business, Engineering and Science (DCABES),
2016 15th International Symposium on. |EEE, 2016.

@ Camille Coti, Charles Lakos, and Laure Petrucci.
Formally proving and enhancing a self-stabilising algorithm.
In Lawrence Cabac, Lars Michael Kristensen, and Heiko Rélke, editors, Petri Nets and Software Engineering.
International Workshop, PNSE'16, Torun, Poland. Proceedings, volume 1591 of CEUR Workshop Proceedings, pages
255-274. CEUR-WS.org, 2016.

James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou.

Communication-avoiding parallel and sequential QR factorizations.
CoRR, abs/0806.2159, 2008

@ C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez, and F. Cappello.

Blocking vs. non-blocking coordinated checkpointing for large-scale fault tolerant mpi.
In SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pages 18-18, 2006

C. Coti.

Exploiting redundant computation in communication-avoiding algorithms for algorithm-based fault tolerance.

In 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International
Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data
and Security (IDS), pages 214-219, 2016

@ C. Coti.

Scalable, robust, fault-tolerant parallel qr factorization.

In 2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded
and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business
Engineering (DCABES), pages 626—633, 2016

Daniel Torres Fault-tolerant matrix factorisation: a formal model and proof
References

References Il

B
B
B
[
B
[

Kurt Jensen and Lars M. Kristensen.

Coloured Petri Nets: Modelling and Validation of Concurrent Systems.
Springer Publishing Company, Incorporated, 1st edition, 2009

Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir.

Toward exascale resilience: 2014 update.
Supercomputing frontiers and innovations, 1(1):5-28, 2014.

Jack Dongarra et al.

The international exascale software project roadmap.
International Journal of High Performance Computing Applications, 2011.

Franck Cappello.

Fault tolerance in petascale/exascale systems: Current knowledge, challenges and research opportunities.
International Journal of High Performance Computing Applications, 23(3):212-226, 2009

William Gropp and Marc Snir.

Programming for exascale computers.
Computing in Science & Engineering, 15:27, 2013.

Rajeev Thakur, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Torsten Hoefler, Sameer Kumar, Ewing

Lusk, and Jesper Larsson Traff.
MPI at exascale.
In Procceedings of SciDAC 2010, Jun. 2010.

(=)

John Shalf, Sudip Dosanjh, and John Morrison.

Exascale computing technology challenges.
In International Conference on High Performance Computing for Computational Science, pages 1-25. Springer, 2010

Daniel Torres
References

Fault-tolerant matrix factorisation: a formal model and proof

References 1l

[
B
[
[

Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K lyer, Fabio Baccanico, Joseph Fullop, and William Kramer.
Lessons learned from the analysis of system failures at petascale: The case of Blue Waters.

In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pages 610-621. IEEE,
2014

Reliability challenges in large systems.

Future Generation Computer Systems, 22(3):293 — 302, 2006.

Wesley Bland, Aurelien Bouteiller, Thomas Hérault, Joshua Hursey, George Bosilca, and Jack J. Dongarra.

An evaluation of user-level failure mitigation support in MPI.
Computing, 95(12):1171-1184, 2013.

Graham E Fagg and Jack J Dongarra.

FT-MPI: Fault tolerant MPI, supporting dynamic applications in a dynamic world.
In European Parallel Virtual Machine/Message Passing Interface Users' Group Meeting, pages 346—353. Springer, 2000

	Motivation
	Introduction
	High Performance Computing
	Fault Tolerance
	Formal Models

	The FT-TSQR algorithm
	TSQR
	FT-TSQR

	Model
	Properties
	Conclusion and perspectives

