SMT-based Bounded Model Checking for Parametric Reaction Systems

Wojciech Penczek

joint work with

Artur Męski

Institute of Computer Science, Polish Academy of Sciences University of Natural Sciences and Humanities

SynCoP, April 7, 2019, Prague

Related Work

- 1. Model checking temporal properties of reaction systems Information Sciences 313, 2015; A. Męski, W. Penczek, G. Rozenberg
- 2. Complexity of model checking for reaction systems, TCS 623, 2016 S. Azimi, C. Gratie, S. Ivanov, L. Manzoni, I. Petre, A. E. Porreca
- 3. Verification of Linear-Time Temporal Properties for Reaction Systems with Discrete Concentrations Fundamenta Informaticae, 2017; A. Męski, M. Koutny, W. Penczek
- 4. Reaction Mining for Reaction Systems

UCNC, 2018; A. Męski, M. Koutny, W. Penczek

Outline

Reaction systems

Model checking for rsCTL over RS

Reaction systems with discrete concentrations

Parametric model checking for rsLTL over RSC

Experimental evaluation

Reaction systems

A reaction system is a pair rs = (S, A), where:

S – finite background set

entities/molecules

► A - set of reactions over S

Each reaction in A is a triple b = (R, I, P) such that R, I, P are nonempty subsets of S with $R \cap I = \emptyset$.

- R reactants, R_b
- I inhibitors, Ib
- P products, P_b

Example

$$(S, A) = (\{1, 2, 3, 4\}, \{a, b, c, d\}) \\ a = (\{1, 4\}, \{2\}, \{1, 2\}) \quad b = (\{2\}, \{4\}, \{1, 3, 4\}) \\ c = (\{1, 3\}, \{2\}, \{1, 2\}) \quad d = (\{3\}, \{2\}, \{1\})$$

In state $\{1, 3, 4\}$:

 \blacktriangleright a, c, d – enabled reactions

Individual results for the reactions:

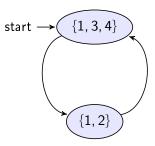
▶
$$a \longrightarrow \{1, 2\}$$

▶
$$b \longrightarrow ∅$$

$$\blacktriangleright c \longrightarrow \{1, 2\}$$

$$\blacktriangleright d \longrightarrow \{1\}$$

Result state: $\{1, 2\}$



Environment

- Execution of reaction systems depends on their environment
- Environment is defined in reaction systems as context
- Context sequence of sets of entities
- Supplied at each step of execution
- Affects reactions enablement:

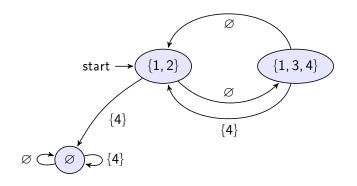
states are extended with a corresponding context

Example

$$(S, A) = (\{1, 2, 3, 4\}, \{a, b, c, d\})$$

initial state: $\{1, 2\}$ environment (context): $2^{\{4\}} = \{\emptyset, \{4\}\}$
$$a = (\{1, 4\}, \{2\}, \{1, 2\}) \quad b = (\{2\}, \{4\}, \{1, 3, 4\})$$

$$c = (\{1, 3\}, \{2\}, \{1, 2\}) \quad d = (\{3\}, \{2\}, \{1\})$$



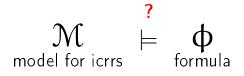
Model checking for rsCTL [MPR15]

Input:

Initialised context restricted reaction system: icrrs

 rsCTL formula φ (rsCTL - CTL with path selection by referring to contexts)

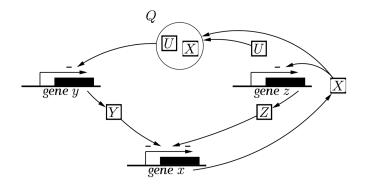
Decision problem:



Theorem. The model checking problem for rsCTL is PSPACE-complete.

Model checking algorithm is based on BDDs.

Example. Gene regulatory network



Three (abstract) genes x, y, z expressing proteins X, Y, Z, respectively, protein U, and protein complex Q formed by X and U. The expression of X by x is inhibited by Y and Z, the expression of Z by z is inhibited by X, and expression of Y by y is inhibited by the protein complex Q. Example. Gene regulatory network: properties

1. It is possible that the protein Q will never be produced:

 $\textbf{EG}(\neg Q).$

2. If we do not supply U in the context, then Q will never be produced:

$$\mathbf{A}_{\Psi}\mathbf{G}(\neg \mathbf{Q}), \text{ where } \Psi = \{ \alpha \subseteq \mathcal{E} \mid \mathbf{U} \notin \alpha \} = \{ \varnothing \}.$$

Linear-Time Temporal Properties of RS

Verification of Linear-Time Temporal Properties for Reaction Systems with Discrete Concentrations Fundamenta Informaticae, 2017; A. Męski, M. Koutny, W. Penczek Multisets over $S : \mathcal{B}(S)$

►
$$s \mapsto i$$
 - multiplicity of s e.g. $\{s \mapsto 2, x \mapsto 3, y\}$
Multiset expressions: $a \in BE(S)$

$$\mathfrak{a} ::= \operatorname{true} | e \sim c | e \sim e | \neg \mathfrak{a} | \mathfrak{a} \lor \mathfrak{a}$$

where:

$$\blacktriangleright ~ \in \{<, \leqslant, =, \geqslant, >\}$$

$$\blacktriangleright e \in S$$

► $c \in \mathbb{N}$

Then $\mathbf{b} \models_{\mathbf{b}} \mathfrak{a}$ means that \mathfrak{a} holds for $\mathbf{b} \in \mathfrak{B}(S)$:

$$\begin{array}{lll} \mathbf{b} \models_{\mathbf{b}} \text{ true} & \text{ for every } \mathbf{b} \in \mathcal{B}(S) \\ \mathbf{b} \models_{\mathbf{b}} e \sim c & \text{ iff } \mathbf{b}(e) \sim c \\ \mathbf{b} \models_{\mathbf{b}} e \sim e' & \text{ iff } \mathbf{b}(e) \sim \mathbf{b}(e') \\ \mathbf{b} \models_{\mathbf{b}} \neg \mathfrak{a} & \text{ iff } \mathbf{b} \not\models_{\mathbf{b}} \mathfrak{a} \\ \mathbf{b} \models_{\mathbf{b}} \mathfrak{a} \lor \mathfrak{a}' & \text{ iff } \mathbf{b} \models_{\mathbf{b}} \mathfrak{a} \text{ or } \mathbf{b} \models_{\mathbf{b}} \mathfrak{a}' \end{array}$$

Reaction systems with concentrations: definition

rsc = (S, A) – reaction system with (discrete) concentrations:

- S finite background set
- A nonempty <u>finite</u> set of c-reactions over S

$$\begin{split} \mathcal{B}(S) &- \text{set of all bags over } S; \\ a &= (\mathbf{r}, \mathbf{i}, \mathbf{p}) \in A - \mathbf{c}\text{-reaction} \\ \blacktriangleright & \mathbf{r}, \mathbf{i}, \mathbf{p} \in \mathcal{B}(S) \text{ with } \mathbf{r}(e) < \mathbf{i}(e), \text{ for every } e \in \text{carr}(\mathbf{i}) \\ & (\text{carr}(\mathbf{b}) = \{s \in S \mid \mathbf{b}(s) > 0\}) \end{split}$$

r, i, p - reactant, inhibitor, and product concentration levels
denoted: r_a, i_a, and p_a

Reaction systems with concentrations: enablement

A c-reaction $a \in A$ is enabled by $t \in \mathcal{B}(S)$, denoted $en_a(t)$, if $\mathbf{r}_a \leq t$ and $t(e) < \mathbf{i}_a(e)$, for every $e \in carr(\mathbf{i}_a)$

 $res_{a}(t)$ – the result of a on t:

$$> res_{a}(t) = \mathbf{p}_{a} \text{ if } en_{a}(t)$$

▶
$$res_{a}(t) = \varnothing_{S}$$
 otherwise

$$res_{A}(\mathbf{t}) = \mathbb{M}\{res_{\mathfrak{a}}(\mathbf{t}) \mid \mathfrak{a} \in A\} = \mathbb{M}\{\mathbf{p}_{\mathfrak{a}} \mid \mathfrak{a} \in A \text{ and } en_{\mathfrak{a}}(\mathbf{t})\}.$$

$$\begin{split} & (\mathbf{B})(x) = \max(\{\mathbf{b}(x) \mid \mathbf{b} \in \mathbf{B}\}) \text{ for non-empty } \mathbf{B} \subseteq \mathcal{B}(S), \\ & \mathbf{b} \leqslant \mathbf{b}' \text{ if } \mathbf{b}(x) \leqslant \mathbf{b}'(x) \text{ for every } x \in X \end{split}$$

Context-restricted rsc

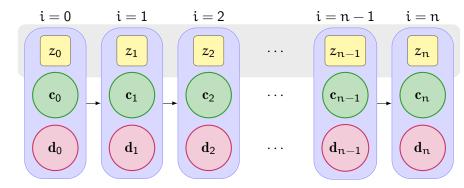
Context automaton over the set $\mathcal{B}(S)$: $ca = (Q, q_0, R)$, where:

- Q finite set of states
- ▶ $q_0 \in Q$ the initial state
- $R \subseteq Q \times \mathcal{B}(S) \times Q$ transition relation

crrsc = (rsc, ca) — context-restricted rsc:

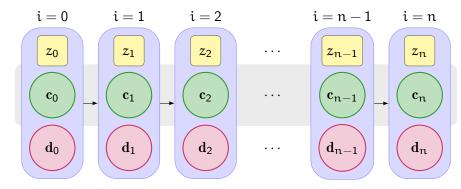
- rsc = (S, A) reaction system with discrete concentrations
- ▶ $ca = (Q, q_0, R)$ context automaton over $\mathcal{B}(S)$

 $\pi = (\zeta, \gamma, \delta) - (n$ -step) interactive process in crrsc



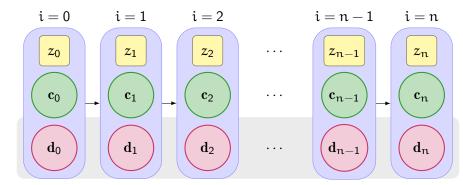
 $\zeta = (z_0, z_1, \dots, z_n) \qquad \qquad z_0, z_1, \dots, z_n \in Q \text{ with } z_0 = q_0$

 $\pi = (\zeta, \gamma, \delta) - (n\text{-step})$ interactive process in crrsc



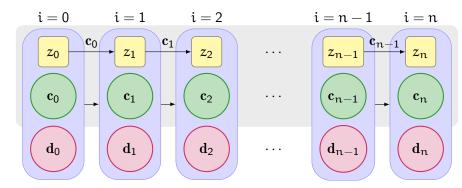
 $\gamma = (\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_n) \qquad \mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_n \in \mathcal{B}(S)$

 $\pi = (\zeta, \gamma, \delta) - (n\text{-step})$ interactive process in crrsc



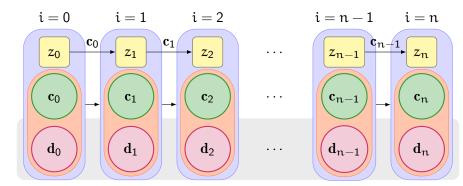
 $\delta = (d_0, d_1, \dots, d_n) \qquad \quad d_0, d_1, \dots, d_n \in \mathcal{B}(S)$

 $\pi = (\zeta, \gamma, \delta) - (n\text{-step})$ interactive process in crrsc



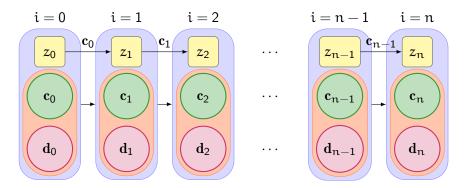
 $(z_{\mathfrak{i}}, \mathbf{c}_{\mathfrak{i}}, z_{\mathfrak{i}+1}) \in \mathsf{R}$, for every $\mathfrak{i} \in \{\mathsf{0}, \dots, \mathsf{n}-1\}$

 $\pi = (\zeta, \gamma, \delta) - (n\text{-step})$ interactive process in crrsc



 $\mathbf{d}_0 = \varnothing_{\mathfrak{B}(S)}, \ \mathbf{d}_i = res_A(\mathbb{M}\{\mathbf{d}_{i-1}, \mathbf{c}_{i-1}\}), \text{ for every } i \in \{1, \dots, n\}$

 $\pi = (\zeta, \gamma, \delta) - (n$ -step) interactive process in crrsc

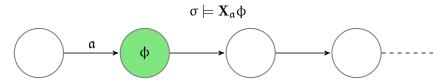


state sequence of π : $(w_0, \ldots, w_n) = (\mathbb{M}\{c_0, d_0\}, \ldots, \mathbb{M}\{c_n, d_n\})$

LTL for RS – rsLTL

The syntax of rsLTL is given by the following grammar:

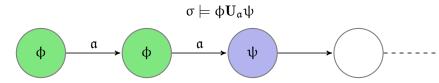
 $\label{eq:phi} \varphi::=\mathfrak{a}\mid\varphi\wedge\varphi\mid\varphi\vee\varphi\mid\mathbf{X}_{\mathfrak{a}}\varphi\mid\varphi\mathbf{U}_{\mathfrak{a}}\varphi\mid\varphi\mathbf{R}_{\mathfrak{a}}\varphi$ where $\mathfrak{a}\in\mathit{BE}(S)$



LTL for RS – rsLTL

The syntax of rsLTL is given by the following grammar:

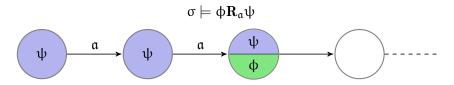
 $\label{eq:phi} \varphi ::= \mathfrak{a} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}_\mathfrak{a} \varphi \mid \varphi \mathbf{U}_\mathfrak{a} \varphi \mid \varphi \mathbf{R}_\mathfrak{a} \varphi$ where $\mathfrak{a} \in \mathit{BE}(S)$



LTL for RS – rsLTL

The syntax of rsLTL is given by the following grammar:

 $\label{eq:phi} \varphi ::= \mathfrak{a} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}_\mathfrak{a} \varphi \mid \varphi \mathbf{U}_\mathfrak{a} \varphi \mid \varphi \mathbf{R}_\mathfrak{a} \varphi$ where $\mathfrak{a} \in \mathit{BE}(S)$



Reaction Mining

 Reactions may be defined partially e.g., missing information about inhibitors, reactants, etc.

From experiments we obtain observations which help fill in the missing information about reactions

Assumption: experiments result in *existential observations*

Reaction Mining

 Reactions may be defined partially e.g., missing information about inhibitors, reactants, etc.

Partially defined reaction systems:

parametric reaction systems

From experiments we obtain observations which help fill in the missing information about reactions

rsLTL is used to express these observations

- Assumption: experiments result in *existential observations*
 - rsLTL interpreted existentially

Parametric reaction systems (with discrete concentrations)

Parametric reaction system: prs = (S, P, A), where:

- S background set
- P set of parameters
- ▶ A set of parametric reactions, $A \neq \emptyset$

S, P, A are finite

Let $\mathfrak{a} = (\mathfrak{r}, \mathfrak{i}, \mathfrak{p}) \in A$: $\mathfrak{r}, \mathfrak{i}, \mathfrak{p} \in \mathcal{B}(S) \cup P$

- ▶ r, i, p denoted by r_a , i_a , and p_a
- reactants, inhibitors, and products of parametric reaction a

Example: Let $\lambda_1, \lambda_2 \in P$

► Parametric reactions: $(\{x, y\}, \lambda_1, \{z\}), (\lambda_1, \{x\}, \lambda_2)$

Parameter valuations

Parameter valuation of prs:

 $v: P \to \mathcal{B}(S)$

• we write $\mathfrak{b}^{\leftarrow v}$ for $v(\mathfrak{b})$

▶ PV_{prs} – all the parameter valuations for prs

Parameter substitutions

▶ Parameters are substituted according to v ∈ PV_{prs}

 $v \in PV_{prs}$ is a valid parameter valuation if $prs^{\leftarrow v}$ yields an rsc

Context-restricted PRS

Context-restricted parametric reaction system (crprs):

$$crprs = (prs, ca)$$

where:

For $v \in PV_{prs}$ we define:

$$crprs^{\leftarrow v} = (prs^{\leftarrow v}, ca)$$

Parameter constraints

 $\mathfrak{c} \in PC(prs)$:

$$\mathfrak{c} ::= \operatorname{true} |\lambda[e] \sim \mathfrak{c} |\lambda[e] \sim \lambda[e] |\neg \mathfrak{c} |\mathfrak{c} \lor \mathfrak{c},$$

where:

$$\lambda \in \mathsf{P} \qquad e \in \mathsf{S} \qquad c \in \mathbb{N} \qquad \sim \in \{<,\leqslant,=,\geqslant,>\}$$

Let $v \in PV_{prs}$

▶ \mathfrak{c} holds in \mathfrak{v} is denoted $\mathfrak{v} \models_p \mathfrak{c}$:

$$\begin{array}{lll} \mathsf{v} \models_p \mathsf{true} & \text{for every } \mathsf{v} \\ \mathsf{v} \models_p \lambda[e] \sim c & \text{if} & \lambda^{\leftarrow \mathsf{v}}(e) \sim c \\ \mathsf{v} \models_p \lambda_1[e_1] \sim \lambda_2[e_2] & \text{if} & \lambda_1^{\leftarrow \mathsf{v}}(e_1) \sim \lambda_2^{\leftarrow \mathsf{v}}(e_2) \\ \mathsf{v} \models_p \neg \mathfrak{c} & \text{if} & \mathsf{v} \nvDash_p \mathfrak{c} \\ \mathsf{v} \models_p \mathfrak{c}_1 \lor \mathfrak{c}_2 & \text{if} & \mathsf{v} \models_p \mathfrak{c}_1 \text{ or } \mathsf{v} \models_p \mathfrak{c}_2 \end{array}$$

Constrained PRS

Constrained parametric reaction system: cprs = (S, P, A, c) where:

 $\blacktriangleright \ prs = (S, P, A)$

$$\blacktriangleright \ \mathfrak{c} \in PC(prs)$$

Context-restricted cprs: cr-cprs = (cprs, ca) where:

Parameter synthesis

$$\blacktriangleright cr-cprs = (cprs, ca)$$

•
$$F = \{\phi_1, \dots, \phi_n\}$$
 – rsLTL formulae

c – parameter constraint

Calculate a valid parameter valuation v of cr-cprs such that:

$$(\mathcal{M}(\mathit{cr}\text{-}\mathit{cprs}^{\leftarrow \mathtt{v}}) \models_{\exists} \varphi_1) \land \dots \land (\mathcal{M}(\mathit{cr}\text{-}\mathit{cprs}^{\leftarrow \mathtt{v}}) \models_{\exists} \varphi_n)$$

Theorem. The problem whether there is a valid parameter valuation is PSPACE-complete.

Incremental approach:

Keep increasing $k \ge 0$ until a valid parameter valuation is found:

$$(\mathfrak{M}(\mathit{cr}\text{-}\mathit{cprs}^{\leftarrow \mathtt{v}})\models^k_\exists \varphi_1)\wedge \dots \wedge (\mathfrak{M}(\mathit{cr}\text{-}\mathit{cprs}^{\leftarrow \mathtt{v}})\models^k_\exists \varphi_n)$$

Encoding of parameter synthesis into SMT

$$\mathsf{f}_{ps} = \left(\bigwedge_{\varphi_f \in \mathsf{F}} \mathsf{Paths}_f^k \wedge \mathsf{Loops}_f^k \wedge \llbracket \varphi_f \rrbracket_0^k \right) \wedge \mathsf{PC}(\overline{\mathbf{p}}^{p\,\mathfrak{ar}})$$

- 1. Test satisfiability of $f_{\rm ps}$
- 2. When $f_{\mathbf{ps}}$ is $\textit{SAT} \rightarrow \textit{extract}$ valuation of parameters
- 3. When $f_{\mathbf{ps}}$ is $\textit{UNSAT} \rightarrow \text{no valid valuation exists}$

Experimental evaluation

Incremental approach: unrolling of interactive processes
Two implementations:

Parametric:

with SMT encoding allowing for parameter synthesis

 Non-parametric – using different SMT encoding (optimised for non-parametric verification)

Using Python and Z3 SMT-solver (4.5.0)

Mutex

▶ $n \ge 2$ processes

competing for exclusive access to critical section

• Background set: $S = \bigcup_{i=1}^{n} S_i$:

- ▶ i-th process: $S_i = \{out_i, req_i, in_i, act_i, lock, done, s\}$
- lock, done, s shared amongst all the processes
- Reactions: $A = \bigcup_{i=1}^{n} A_i \cup \{(\{lock\}, \{done\}, \{lock\})\}$

 \blacktriangleright A_i is the set of reactions associated with the i-th process

Context automaton provides:

the initial context set

context sets – at most two active processes allowed

Mutex

Assumption: open system

► n-th process: additional (malicious) reaction with parameters: $P = \{\lambda_r, \lambda_i, \lambda_n\}$

$$\mathit{cr}\text{-}\mathit{cprs}_{\mathcal{M}} = ((S, P, A \cup \{(\lambda_r, \lambda_i, \lambda_p)\}, \mathfrak{c}), \mathit{ca})$$

•
$$\mathfrak{c} = (\lambda_p[\mathfrak{in}_n] = 0) \land \bigwedge_{\lambda \in P, e \in S \setminus S_n} (\lambda[e] = 0)$$
 - additional reaction:

produces only entities related to the n-th process

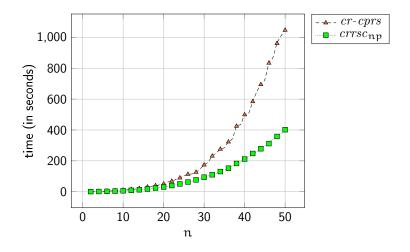
cannot produce in_n (to avoid trivial solutions)

Synthesis: parameter valuation v of cr- $cprs_M$:

• $\phi = \mathbf{F}(in_1 \wedge in_n) - \underline{violation of mutual exclusion}$

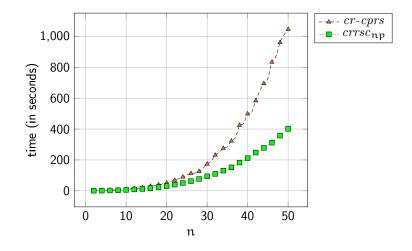
$$\mathfrak{M}(\mathit{cr}\text{-}\mathit{cprs}_M^{\leftarrow \mathtt{v}}) \models_\exists \varphi$$

Results: time



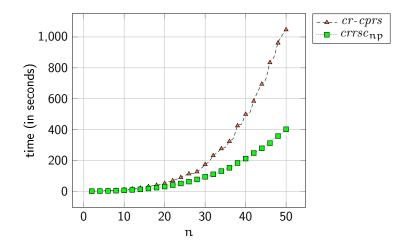
 $\lambda_r^{\leftarrow \mathtt{v}} = \{out_n\}, \ \lambda_i^{\leftarrow \mathtt{v}} = \{s\}, \ \mathtt{and} \ \lambda_p^{\leftarrow \mathtt{v}} = \{req_n, \ done\}$

Results: time



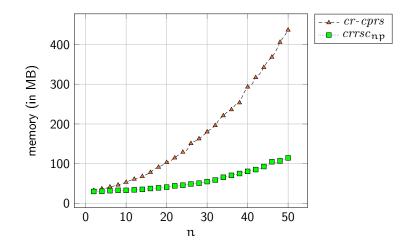
cr-cprs - parametric implementation

Results: time



 $crrsc_{np}$ - non-parametric (hard-coded valuation)

Results: memory



Reaction Systems Model Checking Toolkit

- ✓ rsCTL:
 - Binary Decision Diagrams used for storing and performing operations on Boolean functions
 - Uses BDD-based bounded model checking for efficient verification of existential formulae
- ✓ rsLTL:
 - Based on translation to the SAT problem (SMT)
 - Existential verification
- ✓ Reaction mining for rsLTL:
 - Observations expressed in rsLTL
 - Uses SMT for BMC-based parameter synthesis

Reaction Systems Model Checking Toolkit

Formalism	rsCTL	rsLTL
rs	umc/bmc	bmc
rsc	X	bmc
prs	X	bmc

Conclusions

- Synthesis method for partially defined reaction systems (RS)
- Properties specified using linear-temporal logic for RS
- Demonstrated application in attack synthesis

Further work:

- Tackle universal observations
- Optimisation of SMT-encoding

Conclusions

- Synthesis method for partially defined reaction systems (RS)
- Properties specified using linear-temporal logic for RS
- Demonstrated application in attack synthesis

Further work:

- Tackle universal observations
- Optimisation of SMT-encoding

http://reactionsystems.org

Conclusions

- Synthesis method for partially defined reaction systems (RS)
- Properties specified using linear-temporal logic for RS
- Demonstrated application in attack synthesis

Further work:

- Tackle universal observations
- Optimisation of SMT-encoding

http://reactionsystems.org

Thank you!