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 Jobshop scheduling problems

● Well known combinatorial optimisation problems
● (finite number of) jobs
● (finite number of) machines
● Each job has to accomplish some task
● which consists of operations which use some machine(s)
● A machine can only be used by one job at the same time 
● The operations must obey ordering constraints
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Jobshop scheduling problems

● What is the optimal schedule ?
● Easily computable by trying all schedules
● Typically NP-hard
● Here: a parameterised version
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Parameterised jobshop scheduling

● A fixed number of machines ({a,b,c,...})
● A parameterised number of identical jobs
● Each job is given as a sequence of the machines 

it has to use successively
● For example: a.a.b.c.d.a.a.b.c.c.d
● Each machine can be used by one process at a 

given moment.
● Each step costs 1
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Main problem

● Given a number of machines n, compute 

cost(n) := the number of total steps to complete  
                all n jobs

● Obviously, count(n) can be computed for fixed n
● We want to compute a representation of 

{(n,count(n)) | n >= 1} in one shot
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Example

 

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b
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Example

● a.a.b.a.b.b
● Upper bound for cost(n): 6*n, 

– since each jobs takes at most 6 time units

● Lower bound for cost(n): 3*n
– since each job must use a at least 3 times

● Therefore, 3*n <= cost(n) <= 6*n
● Here, cost(n) = 3*n+3
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Some special cases

● If the job j uses the same machine all the time:

cost(n) = |j|*n
● If the job uses |j| different machines:

cost(n) = n + |j| - 1  
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In general

● Let j be a job
● Let f be the length of j
● Let m be one of the machines which is used the 

most
● Let g be the number of times m is used
● Clearly, g*n <= cost(n) <= f*n  
● we show that cost(n) <= g*n+c for some 

constant c
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Main result

● cost(n) is a semilinear function
– {(n,cost(n)) | n >= 0} is a semilinear set

– that means:

 

 

● Solution: transformation to a Petri Net problem 

cost (n)={
d1  if  n=1

...
d p  if  n=p

k∗n+c1  if  nmod q=0
k∗n+c2  if  nmod q=1

...
k∗n+cq  if  nmod q=q−1
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Transformation to a PN problem

● Counting abstraction
– Each position in the job corresponds to a control state

– Consider number of jobs in each state

● Construct an equivalent PN N 
– Each position in the job corresponds to a place in N

– Transitions of N are moving tokens ahead 

– Each transition is labeled by the corresponding set of machines

● Initially, n tokens or a generating transition
● Each transition is counted for the cost
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Example

● a.a.b….

a a b

a,b

a,b



Peter Habermehl (IRIF) 13

Transition invariants

● Let M be the incidence matrix of N
● A transition invariant is a vector t (multplicities 

of transitions) 

such that  Mt = 0
● Executing a sequence of transitions 

corresponding to t keeps the token counts 
constant
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Transition invariants

Example:

a a b

a,b

a,b

3

2

1 13
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Transition invariants

● Here all transition invariants t are realisable
● which means, there exists a reachable marking, 

s.t. from there a sequence of transitions with 
count t can be executed
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Transition invariants

● Example

a a b

a,b

1

1

1

a,b
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Transition invariants

● One can compute all transition invariants
– finite number of minimal transition invariants

● Compute optimal transition invariants
– the machine m is always in use

● For any number n we can construct a run 
where almost all the time transitions from an 
optimal transition invariant are used 
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Example

● Optimal transition invariant:

● Realisation:

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b

a a b
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Computing cost(n)

● We obtain k*n <= cost(n) <= k*n + c
● It remains to compute for each c’ with 0 <= c’ <= c:

{n | cost(n) = k*n+c’}
● Modify PN N:

– Generate k*n+c’ tokens in a “counting” place and n tokens in the 
initial place

– Remove one token of the “counting” place for each transition
– Define a PN language with one-letter: reach empty marking
– Since one-letter PN languages are regular (Hauschildt/Jantzen 

94), we have that {n | cost(n) = k*n+c’} is semilinear.
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Boundedness conjecture

● For each execution of the PN N, there is an 
execution with same or better cost, where the 
number of tokens are bounded

● Would imply easily the result
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Extensions

● Steps which cost different from 1:
– Cost k: k steps of cost 1

– Rescheduling

● A job can choose from several sequences:
– For example: aababb or bbabab or aabb or bbaa

– Here we still have just one parameter n

– The same reasoning can be applied
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Extensions

● Several parameters:
● n1 jobs of type 1, n2 jobs of type 2, etc.

● Compute cost(n1,n2,...ni)

● We still have that the optimal cost can be 
computed up to a constant c

● but the same reasoning as with cost(n) can not 
be applied
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