Parameterised jobshop scheduling problems

Peter Habermehl (IRIF, Paris)
Ongoing work with A. Sangnier (IRIF) and G.
Zetzsche (MPI-SWS, Kaiserslautern)
SYNCOP 2019

Jobshop scheduling problems

- Well known combinatorial optimisation problems
- (finite number of) jobs
- (finite number of) machines
- Each job has to accomplish some task
- which consists of operations which use some machine(s)
- A machine can only be used by one job at the same time
- The operations must obey ordering constraints

Jobshop scheduling problems

- What is the optimal schedule ?
- Easily computable by trying all schedules
- Typically NP-hard
- Here: a parameterised version

Parameterised jobshop scheduling

- A fixed number of machines (\{a,b,c,...\})
- A parameterised number of identical jobs
- Each job is given as a sequence of the machines it has to use successively
- For example: a.a.b.c.d.a.a.b.c.c.d
- Each machine can be used by one process at a given moment.
- Each step costs 1

Main problem

- Given a number of machines n , compute $\operatorname{cost}(\mathrm{n}):=$ the number of total steps to complete all n jobs
- Obviously, count(n) can be computed for fixed n
- We want to compute a representation of $\{(n, \operatorname{count}(n)) \mid n>=1\}$ in one shot

Example

$$
a a b a b b
$$

```
\(a \mathrm{a} b \mathrm{a} b \mathrm{~b}\)
    a \(a \quad b a b b\)
```

$$
\begin{array}{rl}
a \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array} \mathrm{~b} \quad \mathrm{a} b \mathrm{~b}
$$

$$
\begin{aligned}
& a \mathrm{a} b \mathrm{a} b \mathrm{~b} \\
& \text { a } a \quad b a b b \\
& a \operatorname{aba} b b
\end{aligned}
$$

$$
\begin{aligned}
& a \operatorname{ab} a b \\
& a \quad a \quad b a b b \\
& a \operatorname{abab} b \\
& a \operatorname{ababb}
\end{aligned}
$$

Example

- a.a.b.a.b.b
- Upper bound for $\operatorname{cost}(n): 6 * n$,
- since each jobs takes at most 6 time units
- Lower bound for cost(n): 3*n
- since each job must use a at least 3 times
- Therefore, 3*n <= cost(n) <= 6*n
- Here, $\operatorname{cost}(n)=3 * n+3$

Some special cases

- If the job j uses the same machine all the time: $\operatorname{cost}(n)=|j|^{*} n$
- If the job uses |j| different machines: $\operatorname{cost}(\mathrm{n})=\mathrm{n}+|j|-1$

In general

- Let j be a job
- Let f be the length of j
- Let m be one of the machines which is used the most
- Let g be the number of times m is used
- Clearly, g*n $^{*}=\operatorname{cost}(n)<=f * n$
- we show that cost(n) <= g*n+c for some constant C

Main result

- $\operatorname{cost}(n)$ is a semilinear function
- $\{(n, \operatorname{cost}(n)) \mid n>=0\}$ is a semilinear set
- that means:

$$
\operatorname{cost}(n)=\left\{\begin{array}{c}
d_{1} \text { if } n=1 \\
\ldots \\
d_{p} \text { if } n=p \\
k * n+c_{1} \text { if } n \bmod q=0 \\
k * n+c_{2} \text { if } n \bmod q=1 \\
k * n+c_{q} \text { if } \quad \text { imod } q=q-1
\end{array}\right.
$$

- Solution: transformation to a Petri Net problem

Transformation to a PN problem

- Counting abstraction
- Each position in the job corresponds to a control state
- Consider number of jobs in each state
- Construct an equivalent PN N
- Each position in the job corresponds to a place in N
- Transitions of N are moving tokens ahead
- Each transition is labeled by the corresponding set of machines
- Initially, n tokens or a generating transition
- Each transition is counted for the cost

Example

Peter Habermehl (IRIF)

Transition invariants

- Let M be the incidence matrix of N
- A transition invariant is a vector t (multplicities of transitions)
such that $\mathrm{Mt}=0$
- Executing a sequence of transitions corresponding to t keeps the token counts constant

Transition invariants

Example:

a,b
Peter Habermehl (IRIF)

Transition invariants

- Here all transition invariants t are realisable
- which means, there exists a reachable marking, s.t. from there a sequence of transitions with count t can be executed

Transition invariants

- Example

Peter Habermehl (IRIF)

Transition invariants

- One can compute all transition invariants
- finite number of minimal transition invariants
- Compute optimal transition invariants
- the machine m is always in use
- For any number n we can construct a run where almost all the time transitions from an optimal transition invariant are used

Example

$a a b a b b$

- Optimal transition invariant:
$a \operatorname{ab} a b b$
- Realisation:

a a	b	a				b	b							
			a	a	b		a	Ib	b	b				
					a	a		b		a		b	b	
								a	a		b		a	b
											a	a		

Computing cost(n)

- We obtain $k^{*} n<=\operatorname{cost}(n)<=k^{*} n+c$
- It remains to compute for each c' with $0<=$ c' <= c:
$\left\{n \mid \operatorname{cost}(n)=k^{*} n+c^{\prime}\right\}$
- Modify PN N:
- Generate $\mathrm{k}^{*} \mathrm{n}+\mathrm{c}^{\prime}$ tokens in a "counting" place and n tokens in the initial place
- Remove one token of the "counting" place for each transition
- Define a PN language with one-letter: reach empty marking
- Since one-letter PN languages are regular (Hauschildt/Jantzen 94), we have that $\left\{n \mid \operatorname{cost}(n)=k^{*} n+c^{\prime}\right\}$ is semilinear.

Boundedness conjecture

- For each execution of the PN N, there is an execution with same or better cost, where the number of tokens are bounded
- Would imply easily the result

Extensions

- Steps which cost different from 1:
- Cost k: k steps of cost 1
- Rescheduling
- A job can choose from several sequences:
- For example: aababb or bbabab or aabb or bbaa
- Here we still have just one parameter n
- The same reasoning can be applied

Extensions

- Several parameters:
- n_{1} jobs of type $1, \mathrm{n}_{2}$ jobs of type 2 , etc.
- Compute cost($\left.\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{i}}\right)$
- We still have that the optimal cost can be computed up to a constant c
- but the same reasoning as with cost(n) can not be applied

