
Parameterised jobshop scheduling
problems

Peter Habermehl (IRIF, Paris)
Ongoing work with A. Sangnier (IRIF) and G.

Zetzsche (MPI-SWS, Kaiserslautern)

SYNCOP 2019

Peter Habermehl (IRIF) 2

 Jobshop scheduling problems

● Well known combinatorial optimisation problems
● (finite number of) jobs
● (finite number of) machines
● Each job has to accomplish some task
● which consists of operations which use some machine(s)
● A machine can only be used by one job at the same time
● The operations must obey ordering constraints

Peter Habermehl (IRIF) 3

Jobshop scheduling problems

● What is the optimal schedule ?
● Easily computable by trying all schedules
● Typically NP-hard
● Here: a parameterised version

Peter Habermehl (IRIF) 4

Parameterised jobshop scheduling

● A fixed number of machines ({a,b,c,...})
● A parameterised number of identical jobs
● Each job is given as a sequence of the machines

it has to use successively
● For example: a.a.b.c.d.a.a.b.c.c.d
● Each machine can be used by one process at a

given moment.
● Each step costs 1

Peter Habermehl (IRIF) 5

Main problem

● Given a number of machines n, compute

cost(n) := the number of total steps to complete
 all n jobs

● Obviously, count(n) can be computed for fixed n
● We want to compute a representation of

{(n,count(n)) | n >= 1} in one shot

Peter Habermehl (IRIF) 6

Example

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

Peter Habermehl (IRIF) 7

Example

● a.a.b.a.b.b
● Upper bound for cost(n): 6*n,

– since each jobs takes at most 6 time units

● Lower bound for cost(n): 3*n
– since each job must use a at least 3 times

● Therefore, 3*n <= cost(n) <= 6*n
● Here, cost(n) = 3*n+3

Peter Habermehl (IRIF) 8

Some special cases

● If the job j uses the same machine all the time:

cost(n) = |j|*n
● If the job uses |j| different machines:

cost(n) = n + |j| - 1

Peter Habermehl (IRIF) 9

In general

● Let j be a job
● Let f be the length of j
● Let m be one of the machines which is used the

most
● Let g be the number of times m is used
● Clearly, g*n <= cost(n) <= f*n
● we show that cost(n) <= g*n+c for some

constant c

Peter Habermehl (IRIF) 10

Main result

● cost(n) is a semilinear function
– {(n,cost(n)) | n >= 0} is a semilinear set

– that means:

● Solution: transformation to a Petri Net problem

cost (n)={
d1 if n=1

...
d p if n=p

k∗n+c1 if nmod q=0
k∗n+c2 if nmod q=1

...
k∗n+cq if nmod q=q−1

Peter Habermehl (IRIF) 11

Transformation to a PN problem

● Counting abstraction
– Each position in the job corresponds to a control state

– Consider number of jobs in each state

● Construct an equivalent PN N
– Each position in the job corresponds to a place in N

– Transitions of N are moving tokens ahead

– Each transition is labeled by the corresponding set of machines

● Initially, n tokens or a generating transition
● Each transition is counted for the cost

Peter Habermehl (IRIF) 12

Example

● a.a.b….

a a b

a,b

a,b

Peter Habermehl (IRIF) 13

Transition invariants

● Let M be the incidence matrix of N
● A transition invariant is a vector t (multplicities

of transitions)

such that Mt = 0
● Executing a sequence of transitions

corresponding to t keeps the token counts
constant

Peter Habermehl (IRIF) 14

Transition invariants

Example:

a a b

a,b

a,b

3

2

1 13

Peter Habermehl (IRIF) 15

Transition invariants

● Here all transition invariants t are realisable
● which means, there exists a reachable marking,

s.t. from there a sequence of transitions with
count t can be executed

Peter Habermehl (IRIF) 16

Transition invariants

● Example

a a b

a,b

1

1

1

a,b

Peter Habermehl (IRIF) 17

Transition invariants

● One can compute all transition invariants
– finite number of minimal transition invariants

● Compute optimal transition invariants
– the machine m is always in use

● For any number n we can construct a run
where almost all the time transitions from an
optimal transition invariant are used

Peter Habermehl (IRIF) 18

Example

● Optimal transition invariant:

● Realisation:

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b b

a a b a b

a a b

Peter Habermehl (IRIF) 19

Computing cost(n)

● We obtain k*n <= cost(n) <= k*n + c
● It remains to compute for each c’ with 0 <= c’ <= c:

{n | cost(n) = k*n+c’}
● Modify PN N:

– Generate k*n+c’ tokens in a “counting” place and n tokens in the
initial place

– Remove one token of the “counting” place for each transition
– Define a PN language with one-letter: reach empty marking
– Since one-letter PN languages are regular (Hauschildt/Jantzen

94), we have that {n | cost(n) = k*n+c’} is semilinear.

Peter Habermehl (IRIF) 20

Boundedness conjecture

● For each execution of the PN N, there is an
execution with same or better cost, where the
number of tokens are bounded

● Would imply easily the result

Peter Habermehl (IRIF) 21

Extensions

● Steps which cost different from 1:
– Cost k: k steps of cost 1

– Rescheduling

● A job can choose from several sequences:
– For example: aababb or bbabab or aabb or bbaa

– Here we still have just one parameter n

– The same reasoning can be applied

Peter Habermehl (IRIF) 22

Extensions

● Several parameters:
● n1 jobs of type 1, n2 jobs of type 2, etc.

● Compute cost(n1,n2,...ni)

● We still have that the optimal cost can be
computed up to a constant c

● but the same reasoning as with cost(n) can not
be applied

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

