Parameterised jobshop scheduling problems

Peter Habermehl (IRIF, Paris)
Ongoing work with A. Sangnier (IRIF) and G.
Zetzsche (MPI-SWS, Kaiserslautern)

SYNCOP 2019

Jobshop scheduling problems

- Well known combinatorial optimisation problems
- (finite number of) jobs
- (finite number of) machines
- Each job has to accomplish some task
- which consists of operations which use some machine(s)
- A machine can only be used by one job at the same time
- The operations must obey ordering constraints

Jobshop scheduling problems

- What is the optimal schedule?
- Easily computable by trying all schedules
- Typically NP-hard
- Here: a parameterised version

Parameterised jobshop scheduling

- A fixed number of machines ({a,b,c,...})
- A parameterised number of identical jobs
- Each job is given as a sequence of the machines it has to use successively
- For example: a.a.b.c.d.a.a.b.c.c.d
- Each machine can be used by one process at a given moment.
- Each step costs 1

Main problem

- Given a number of machines n, compute cost(n) := the number of total steps to complete all n jobs
- Obviously, count(n) can be computed for fixed n
- We want to compute a representation of {(n,count(n)) | n >= 1} in one shot

Example

a a b a b b

a	a	b	a	b		b			
		a		a	b	a	b	b	

a	a	b	a	b	b						
		a		a		b	a	b	b		
					a	a	b	a		b	b

Example

- a.a.b.a.b.b
- Upper bound for cost(n): 6*n,
 - since each jobs takes at most 6 time units
- Lower bound for cost(n): 3*n
 - since each job must use a at least 3 times
- Therefore, 3*n <= cost(n) <= 6*n
- Here, cost(n) = 3*n+3

Some special cases

If the job j uses the same machine all the time:
 cost(n) = |i|*n

• If the job uses |j| different machines:

$$cost(n) = n + |j| - 1$$

In general

- Let j be a job
- Let f be the length of j
- Let m be one of the machines which is used the most
- Let g be the number of times m is used
- Clearly, g*n <= cost(n) <= f*n
- we show that cost(n) <= g*n+c for some constant c

Main result

- cost(n) is a semilinear function
 - $\{(n, cost(n)) \mid n \ge 0\}$ is a semilinear set
 - that means: $cost(n) = \begin{cases} d_1 & if \quad n=1 \\ \dots \\ d_p & if \quad n=p \\ k*n+c_1 & if \quad n \mod q=0 \\ k*n+c_2 & if \quad n \mod q=1 \\ \dots \\ k*n+c_q & if \quad n \mod q=q-1 \end{cases}$

• Solution: transformation to a Petri Net problem

Transformation to a PN problem

- Counting abstraction
 - Each position in the job corresponds to a control state
 - Consider number of jobs in each state
- Construct an equivalent PN N
 - Each position in the job corresponds to a place in N
 - Transitions of N are moving tokens ahead
 - Each transition is labeled by the corresponding set of machines
- Initially, n tokens or a generating transition
- Each transition is counted for the cost

Example

a,b • a.a.b.... b a a a,b

- Let M be the incidence matrix of N
- A transition invariant is a vector t (multplicities of transitions)
 - such that Mt = 0
- Executing a sequence of transitions corresponding to t keeps the token counts constant

- Here all transition invariants t are realisable
- which means, there exists a reachable marking, s.t. from there a sequence of transitions with count t can be executed

 Example a,b 1 a a a,b

- One can compute all transition invariants
 - finite number of minimal transition invariants
- Compute optimal transition invariants
 - the machine m is always in use
- For any number n we can construct a run where almost all the time transitions from an optimal transition invariant are used

Example

a a b a b b

Optimal transition invariant:

Realisation:

Computing cost(n)

- We obtain k*n <= cost(n) <= k*n + c
- It remains to compute for each c' with 0 <= c' <= c:
 {n | cost(n) = k*n+c'}
- Modify PN N:
 - Generate k*n+c' tokens in a "counting" place and n tokens in the initial place
 - Remove one token of the "counting" place for each transition
 - Define a PN language with one-letter: reach empty marking
 - Since one-letter PN languages are regular (Hauschildt/Jantzen 94), we have that $\{n \mid cost(n) = k*n+c'\}$ is semilinear.

Boundedness conjecture

- For each execution of the PN N, there is an execution with same or better cost, where the number of tokens are bounded
- Would imply easily the result

Extensions

- Steps which cost different from 1:
 - Cost k: k steps of cost 1
 - Rescheduling
- A job can choose from several sequences:
 - For example: aababb or bbabab or aabb or bbaa
 - Here we still have just one parameter n
 - The same reasoning can be applied

Extensions

- Several parameters:
- n₁ jobs of type 1, n₂ jobs of type 2, etc.
- Compute cost(n₁,n₂,...n_i)
- We still have that the optimal cost can be computed up to a constant c
- but the same reasoning as with cost(n) can not be applied