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Abstract. Parameter verification and synthesis problems for stochastic systems
are still hard challenges. The tasks become even more prohibitive when the sys-
tems are large-scale and the verification/synthesis is respect the satisfaction of
some linear temporal logic formulae. In this paper, we review a number of tech-
niques that we designed to tackle such problems. The methods exploit the Gaus-
sian Processes (GP) regression and an efficient Bayesian optimization algorithm.

1 Introduction and Problem Formulation

The world around us is complex, and when we try to model some aspects of it mathe-
matically, we need to deal with underspecification and uncertainty in our descriptions.
Stochastic processes offer a powerful framework to account consistently for such an
uncertainty. However, stochastic models are still plagued by underspecification, in par-
ticular for what concerns the value of some defined parameters. While some of these
parameters represent intrinsic and unknown properties of the system at hand, and may
be learned from observations, others may be controllable or tunable in a design phase.
This is the case in complex engineered systems interacting with uncertain environments,
like Cyber-Physical Systems. Hence, there is the need of efficient model-based design
approaches capable of dealing with uncertain parameters.

Formal methods are classical techniques used for specifications of complex be-
haviours, which can be applied also to stochastic systems, but they suffer from scal-
ability issues. A possibility is to use simulation combined with statistical methods [1].
However, if our model presents also uncertain parameters we have additional compu-
tational cost and even these methods can be unfeasible. Here we review a number of
techniques [2, 4,5, 7] that we designed to do parameter verification and synthesis of
such models that exploit Machine Learning and Bayesian Optimization.

Let us consider a stochastic model My, where 8 = (61,...,0;) is a parameter
vector, taking values in a space © C R¥. Usually we consider stochastic models defined
as Population Continuous Time Markov Chain (PCTMC), but similar results can be
obtained for different classes of stochastic systems that depend continuously on model
parameters.

Running example. SIR epidemic models [10] are used to describe the spread of a dis-
ease in a population, and often represented as a stochastic process X (t) = (Xg(t), X1(¢),
Xr(t)), where each X;(t) € N counts the number of Susceptible (S), Infected (I) and
Recovered (R) individuals at time ¢. We call z(t) € D a single simulation, with D



the trajectory space; k; (infected rate) and k,. (recovery rate) are the uncertain param-
eters. Examples of behaviours that can be interesting to identify are: “the number of
infected individuals peaks above 30 between 35 and 45 time units” and “the epidemic
will terminate between 100 and 200 time units”.

Signal Temporal Logic. Behavioural properties can be expressed using formal lan-
guages as Temporal Logics. Here we consider Signal Temporal Logic (STL) [11], which
is a linear time temporal logic, with dense-time interval and real-valued trajectories and
it comes with very efficient monitoring algorithms to check if a property is satisfied
in a trace. The logic features a number of temporal operators that predicate properties
about future or past configurations. The two behaviours previously described formally
read as. Ypeak = 35,45/ (X1 > 30) (using the globally or always operator G) and
Peatine = (X1 > 1)Up00,200/ (X1 < 0) (using the until operator /). The Boolean
semantics of the logic checks if a single trajectory (simulation) of the system satisfies
or not a formula ((z,0) = ¢). Combining it with the probability distribution Py over
the trajectory space D induced by the stochastic model My, we can define the satisfac-
tion probability as P,(0) = Py{z(t) € D | (z,0) = ¢}. A similar definition can be
done for the quantitative semantics of STL [8, 9]. This semantics assigns a real-valued
p(p, x,0) to each formula and trajectory x. The sign is positive (resp. negative) if the
formula is true (resp. false), while the absolute value measures some robustness of the
truth value. The key indicator here is the expectation R (0) = Eq[p(¢, z,0)] that can
be seen as the average robustness of satisfaction in our model.

Problem Formulation. The type of problem that we want to solve is: let f,,(#) be the
probability or expectation function. Given a model My, and an STL property ¢, we
want to compute f,,(¢) as a function of the model parameters 6 € ©.

2 Methodology and Discussion

The exact evaluation of f,,(6), with @ € © a fixed parameter configuration, is extremely
computationally costly. Statistical Model Cheking (SMC) is a viable approximate al-
ternative: the model is simulated for a finite number of runs and the STL property is
checked on each single trace, properties are evaluated and standard statistical techniques
are then used to estimate f.,(0). As a further step, we propose Smoothed Model Chek-
ing (SmMC), estimating f,,(#) as a function of model parameters leveraging Gaussian
Processes (GP) regression.

Gaussian Processes. GPs are a Bayesian non-parametric approach used to solve super-
vised learning task. Roughly speaking, a GP is a distribution over a function space with
the property that any finite dimensional distribution is Gaussian. In a regression task, a
GP prior is combined with observations to provide a GP posterior. When integrals used
to define the posterior are not analytically solvable, variational methods are typically
used. We refer the reader to [12] for further details.

Smoothed Model Checking leverages GP to approximate the satisfaction probability
(or average robustness) from a finite number of sampled trajectories at different parame-
ter points evaluated via SMC, resulting in a Binomial likelihood model for observations.



Formally, a GP defines a latent function g(), which is then mapped into a probability
value in [0, 1] by the Probit function (the quantile function associated with the standard
normal distribution), and inference of the posterior is carried out relying on an efficient
variational approximation known as Expectation Propagation [4].

System Design via Robustness maximization In this setting, we want to find the pa-
rameter configuration 8* for which the model My~ maximizes the average robustness
R, (). Here GP reduces to a regression task using the noisy observations of R (6).
The method exploits an active learning and Bayesian optimization algorithm, called
GP-Upper Confidence Bound [13]. Instead of optimizing directly the emulated average
robustness function, we optimize an upper confidence bound of the GP. This permits
to have an exploration-exploitation trade-off, depending whether 6* is coming from a
region of high mean or of high variance. More details on this methodology can be found
in [2]. In Fig. 1(left) we see a simulation of the SIR model with best #* that maximize
RWPeak .

Parameter synthesis. SmMC has been applied [7] to explore and identify the regions
of the parameter space where the satisfaction probability of a target STL property ¢ is
above or below a given threshold, i.e, {§ € © | P,(#) > a}. The key idea is to leverage
the GP surrogate model learned by SmMC, in order to compute the GP probability
p that the satisfaction probability of ¢ is above or below a specific threshold «;, i.e.,
p(P,(0) > «). This confidence probability is then used to drive an active learning
strategy which adds samples of parameters 6 from regions of highest uncertainty on
whether the probability of satisfaction of ¢ is above or below the predefined threshold.
In Fig. 1(right) we show the parameter synthesis algorithm at work for the SIR model.
Notice how the density of sampled points (black dots) is larger in the areas where the
satisfaction probability is close to the threshold.

Discussion. Combining simulation with Bayesian machine learning enables and effi-
cient statistical approach for parametric verification. The method can be extended to
other linear time specifications [6], and is implemented in the open tool U-check [3].
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Fig. 1: Simulation of the SIR model with best §* optimizing R,,,.,, (left) Parameter
synthesis of infection k; and recovery rate k,., with probability below (resp. above) the
threshold in the blue (resp. red) regions and in yellow the uncertain ones (right).
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