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Abstract. We formalize the problem of maximizing the mean-payoff
value with high probability while satisfying a parity objective in a Markov
decision process (MDP) with unknown probabilistic transition function
and unknown reward function. Assuming the support of the unknown tran-
sition function and a lower bound on the minimal transition probability
are known in advance, we show tight bounds for achievable combinations
of types of strategies (finite or infinite memory) and types of guarantees
(sure, almost sure, probably approximately correct).

Reactive synthesis and online reinforcement learning. Reactive systems
are systems that maintain a continuous interaction with the environment in
which they operate. When designing such systems, we usually face two partially
conflicting objectives. First, to ensure a safe execution, we want some basic and
critical properties to be enforced by the system no matter how the environment
behaves. Second, we want the reactive system to be as efficient as possible given
the actual observed behaviour of the environment in which the system is executed.
As an illustration, let us consider a robot that needs to explore an unknown
environment as efficiently as possible while avoiding any collision. While operating
at low speed makes it easier to avoid collisions, it will impair its ability to explore
the environment quickly even if the environment is clear of other objects.

There has been, in the past, a large research effort to define mathematical mod-
els and algorithms in order to address the two objectives above, but in isolation
only. To synthesize safe control strategies, two-player zero-sum games with omega-
regular objectives have been proposed, see e.g. [I]. Reinforcement-learning (RL,
for short) algorithms for partially-specified Markov decision processes (MDPs)
have been proposed, see e.g. [5]) to learn strategies that reach (near-)optimal
performance in the actual environment in which the system is executed. Here
we want to answer the following question: How efficient can online-learning
techniques be if only correct executions, i.e. executions that satisfy a specified
omega-reqular objective, are explored during execution? So, we want to understand
how to combine synthesis and RL to construct systems that are safe, yet, at the
same time, can adapt their behaviour according to the actual environment in
which they execute.

* This abstract is a shortened version of the Concur’18 paper [4].



Problem statement. In order to answer in a precise way the question above,
we consider a model halfway between the fully-unknown models considered in
RL and the full-known models used in verification. To be precise, we consider
as input an MDP with rewards whose transition probabilities are not known
and whose rewards are discovered on the fly. That is, the input is the support of
the unknown transition function of the MDP. This is natural from the point of
view of verification since: we may be working with an underspecified system, its
qualitative behaviour may have already been observed, or we may not trust all
given probability values. As optimization objective on this MDP, we consider the
mean-payoff function, and to capture the sure omega-regular constraint we use a
parity objective.

Contributions. Given a lower bound 7,;; on the minimal transition probability,
we show that, in partially-specified MDPs consisting of a single end component
(EC), two combinations of guarantees on the parity and mean-payoff objectives
can be achieved:

1. For all € and y, we show how to construct a finite-memory strategy which
almost-surely satisfies the parity objective and which achieves an e-optimal
mean payoff with probability at least 1 — ~.

2. For all € and -, we show how to construct an infinite-memory strategy which
satisfies the parity objective surely and which achieves an e-optimal mean
payoff with probability at least 1 — ~.

We also extend our results to MDPs consisting of more than one EC in a natural
way and study special cases that allow for improved optimality results as in the
case of good ECs. Finally, we show that there are partially-specified MDPs for
which stronger combinations of the guarantees cannot be ensured. Our usage of
Tmin follows [2I3] where it is argued that it is necessary for the statistical analysis
of unbounded-horizon properties and realistic in many scenarios.

Example: Almost-sure constraints. Consider the MDP on the right-hand
side of Fig. [1] for which we know the support of the transition function but not
the probabilities  and y (for simplicity the rewards are assumed to be known).
First, note that while there is no surely winning strategy for the parity objective
in this MDP, playing action a forever in gy guarantees to visit state g3 infinitely
many times with probability one, i.e. this is a strategy that almost-surely wins
the parity objective. Clearly, if > y then it is better to play b for optimizing
the mean-payoff, otherwise, it is better to play a. As x and y are unknown, we
need to learn estimates & and ¢ for those values to make a decision. This can
be done by playing a and b a number of times from gy and by observing how
many times we get up and how many times we get down. If £ > ¢, we may
choose to play b forever in order to optimize our mean payoff. We then face two
difficulties. First, after the learning episode, we may instead observe & < ¢ while
x > y. This is because we may have been unlucky and observed statistics that
differ from the real distribution. Second, playing b always is not an option if
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Fig. 1. Two automata, representing unknown MDPs, are depicted in the figure. Actions
label edges from states (circles) to distributions (squares); a probability-reward pair,
edges from distributions to states; an action-reward pair, Dirac transitions; a name-
priority pair, states.

we want to satisfy the parity objective with probability 1 (almost surely). We
give algorithms to overcome these two problems and compute a finite-memory
strategy that satisfies the parity objective with probability 1 and is close to the
optimal expected mean-payoff value with high probability.

The finite-memory learning strategy produced by our algorithm works as
follows in this example. First, it chooses n € N large enough so that trying a and
b from gy as many as n times allows it to learn & and ¢ such that | — 2| < ¢ and
|§ — y| < e with probability at least 1 —+. Then, if & > § the strategy plays b for
K steps and then a once. K is chosen large enough so that the mean payoff of any
run will be e-close to the best obtainable expected mean payoff with probability
at least 1 — «. Furthermore, as a is played infinitely many times, the upper-right
state will be visited infinitely many times with probability 1. Hence, the strategy
is also almost-surely satisfying the parity objective.

We also show that if we allow for learning all along the execution of the
strategy then we can get, on this example, the exact optimal value and satisfy
the parity objective almost surely. However, to do so, we need infinite memory.

For details, see the full version [4].
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