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Probabilistic Systems. Many real-world systems exhibit random behavior
and stochastic uncertainties. One major example is in the field of robotics,
where the presence of measurement noise or input disturbances requires special
controller synthesis techniques [28] that achieve robustness of robot actions
against uncertainties in the robot model and the environment. Formal verification
offers methods for rigorously proving or disproving properties about the system
behavior, and synthesizing strategies that satisfy these properties. In particular,
model checking [25] is a well-studied technique that provides guarantees on
appropriate behavior for all possible events and scenarios. Model checking can be
applied to systems with stochastic uncertainties, including discrete-time Markov
chains (MCs), Markov decision processes (MDPs), and their continuous-time
counterparts [16]. Probabilistic model checkers are able to verify reachability
properties like “the probability of reaching a set of unsafe states is ≤ 10%” and
expected costs properties like “the expected cost of reaching a goal state is ≤ 20.”
A rich set of properties, specified by linear- and branching-time logics, reduces to
such properties [16]. Efficient implementations are readily available in tools like
PRISM [9] or STORM [20].

Introducing Parameters. Key requirements for applying model checking are a
reliable system model and formal specifications of desired or undesired behaviors.
As a result, most approaches assume that models of the stochastic uncertainties
are precisely given. For example, if a system description includes an environmen-
tal disturbance, the mean of that disturbance should be known before formal
statements are made about expected system behavior. However, the desire to
treat many applications where uncertainty measures (e.g., faultiness, reliability,
reaction rates, packet loss ratio) are not exactly known at design time gives
rise to parametric probabilistic models [1, 14]. Here, transition probabilities are
expressed as functions over system parameters, i.e., descriptions of uncertainties.
In this setting, parameter synthesis addresses the problem of computing parame-
ter instantiations leading to satisfaction of system specifications. More precisely,
parameters are mapped to concrete probabilities inducing the resulting instan-
tiated model to satisfy specifications. A direct application is model repair [8],
where a concrete model (without parameters) is changed (repaired) such that
specifications are satisfied.

Related Work. Dedicated tools like PARAM [7], PRISM [9], or PROPhESY [12]
compute rational functions over parameters that express reachability probabilities



or expected costs in a parametric Markov chain (pMC). These optimized tools
work with millions of states but are restricted to a few parameters, as the necessary
computation of greatest common divisors does not scale well with the number of
parameters. Equivalently, [15, 21] employ Gaussian elimination for matrices over
the field of rational functions. The resulting functions are inherently nonlinear
and often of high degree. Solving the functions is naturally a SAT-modulo theories
(SMT) problem over non-linear arithmetic. However, solving such SMT problems
is exponential in the degree of functions and the number of variables [21].

Specific approaches to model repair rely on nonlinear programming [8] or
particle-swarm optimization (PSO) [10]. Finally, parameter synthesis is equiv-
alent to computing finite-memory strategies for partially observable MDPs
(POMDPs) [24]. Such strategies may be obtained, for instance, by employ-
ing sequential quadratic programming (SQP) [4]. Exploiting this approach is
not practical, though, because SQP for our setting already requires a (feasible)
solution satisfying the given specification.

A Nonlinear Programming Problem. We first introduce a general nonlinear
programming formulation for the verification of parametric Markov decision
processes (pMDPs). The powerful modeling capabilities of nonlinear programs
(NLPs) enable incorporating multi-objective properties and penalties on the
parameters of the pMDP. However, because of their generality, solving NLPs
to find a global optimum is difficult. Even feasible solutions (satisfying the
constraints) cannot always be computed efficiently [26, 2]. In contrast, for the
class of NLPs called convex optimization problems, efficient methods to compute
feasible solutions and global optima even for large-scale problems are available [27].
We propose two (automated) methods of utilizing convex optimization for pMDPs.

Sequential Convex Programming [19]. Many NLP problems for pMDPs
belong to the class of signomial programs (SGPs), a certain class of nonconvex
optimization problems. For instance, all benchmarks available at the PARAM–
webpage [13] belong to this class. Restricting the general pMDP problem accord-
ingly yields a direct and efficient synthesis method for a large class of pMDP
problems. The two main technical results are:

1. We relax nonconvex constraints in SGPs and apply a simple transformation
to the parameter functions. The resulting programs are geometric programs
(GPs) [5], a class of convex programs. We show that a solution to the relaxed
GP induces feasibility (satisfaction of all specifications) in the original pMDP
problem. Note that solving GPs is polynomial in the number of variables.

2. Given an initial feasible solution, we use a technique called sequential convex
programming [5] to improve a signomial objective. This local optimization
method for nonconvex problems leverages convex optimization by solving a
sequence of convex approximations (GPs) of the original SGP.

Sequential convex programming is known to efficiently find a feasible solution
with good, though not necessarily globally optimal, objective values [5, 6]. We
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initialize the sequence with a feasible solution (obtained from the GP) of the
original problem and compute a trust region. Inside this region, the optimal value
of the approximation of the SGP is at least as good as the objective value at the
feasible solution of the GP. The optimal solution of the approximation is then
the initial point of the next iteration with a new trust region. This procedure is
iterated to approximate a local optimum of the original problem.

The Convex-concave Procedure [23]. In another direction, we transform
the NLP formulation into a quadratically-constrained quadratic program (QCQP).
As such an optimization problem is nonconvex in general, we cannot resort to
polynomial-time algorithms for convex QCQPs [3]. Instead, to solve our NP-hard
problem, we massage the QCQP formulation into a difference-of-convex (DC)
problem. The convex-concave procedure (CCP) [17] yields local optima of a
DC problem by a convexification towards a convex quadratic program, which is
amenable for state-of-the-art solvers such as Gurobi [11].

Yet, blackbox CCP solvers [22, 18] suffer from severe numerical issues and
can only solve very small problems. We integrate the procedure with a proba-
bilistic model checker, creating a method that — realized in the open-source tool
PROPhESY [12] — yields (a) an improvement of multiple orders of magnitude
compared to just using CCP as a black box and (b) ensures the correctness of
the solution. In particular, we use probabilistic model checking to:
– rule out feasible solutions that may be spurious due to numerical errors,
– check if intermediate solutions are already feasible for earlier termination,
– compute concrete probabilities from intermediate parameter instantiations

to avoid potential numerical instabilities.

Experiments. Empirical evaluation on a large range of benchmarks shows
that our approaches can solve the parameter synthesis problem for models with
large state spaces and up to thousands of parameters, and is superior to all
existing parameter synthesis tools [7, 9, 12] and an efficient re-implementation of
an approach based on particle-swarm optimization (PSO) [10] that we created to
deliver a better comparison.

We include the standard benchmarks from the PARAM or the PRISM website,
and a rich selection of strategy synthesis problems obtained from partially
observable MDPs (POMDPs), cf. [24].
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