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Abstract. Unmanned Aerial Vehicles (UAV) are now widespread in our society and are often used in
a context where they can put people at risk. Studying their reliability, in particular in the context of
flight above a crowd, thus becomes a necessity. In this paper, we study the modelling and analysis of
UAV in the context of their flight plan. To this purpose, we build a parametric probabilistic model of
the UAV and use it, as well as a given flight plan, in order to model its trajectory. This model takes into
account parameters such as potential filter or sensor failure as well as wind force and direction. Because
of the nature and complexity of the successive obtained models, their exact verification using tools such
as PRISM or PARAM is impossible. We use a new approximation method, called Parametric Statistical
Model Checking, in order to compute failure probabilities. This method has been implemented in a
prototype tool, which we use to resolve complex issues in a practical case study.

1 Introduction

Unmanned Aerial Vehicles (UAV) are more and more present in our lives through entertainment activities or
industrial activities. Therefore they can be dangerous for their environment, for instance in case of a failure
when an UAV (aka a drone) is flying above a crowd. In this context, we are working with the PIXIEL3

company to build a reliable UAV control system. PIXIEL is a company expert in public performances
including UAVs, and is in particular known for developing a public performance in the French entertainment
park called ”Puy du Fou” that includes both human actors and drones.

There are many works dedicated to the study of UAVs. In [10] Koppány Máthé and Lucian Buşoniu
study the functioning of a drone. UAV movement recognition is studied in [3], while automatic landing on
target is described in [8] and monitoring and conservation are dealt with in [4]. Some works also try to
detect breakdowns and malfunctions that can impact drones. We can mention inter alia, the detection of
communication errors in a multi-drone framework studied in [6] or the development of a basic diagnosis
model for solving system issues in [2]. However, to the best of our knowledge, there are no existing works on
the parametric study of the impact of component inaccuracy on UAV trajectory.

In order to study and improve the reliability of the drone control system and its safety with respect to
the public audience, we perform a rigorous study of the control system in the context of a given flight plan.
Our focus is to compute the probability that the actual drone trajectory is far enough from the flight plan
that it may endanger the public. To this intent, we decompose the drone system into its main components
and study their reliability and accuracy. In particular, we focus on the component that is mostly responsible
for deviations in the drone trajectory: the sensors and filter. The Flight Control System (FCS) of the drone
is modelled using a parametric Markov Chain (pMC), where the parameters represent levels of inaccuracy of
the estimated position of the drone. We then use this model in order to compute the parametric probability
that the drone trajectory deviates from the intended flight plan. Exact verification techniques such as those
implemented in existing model checking tools for pMCs such as PRISM [7] or PARAM [5] are unsuccessful
due to the complexity and size of our model. We therefore use a new technique called parametric Statistical
Model Checking, that allows us to approximate this probability in the form of a polynomial function of the
parameters.

In Section 2, we briefly explain how we built our formal model. Section 3 then gives the a brief intuition
for parametric SMC. Finally, Section 4 presents the results of our experiments using the prototype tool we
developed.

3 https://www.pixiel-group.com/



2 Building UAV Model

In this section, we start by reviewing the main components of the drone system and explaining the property
we want to verify. We then propose a formal model of the drone that allows to compute its effective trajectory.

2.1 Flight Control System

Fig. 1: Flight Control Overview

Since we are interested in computing the effective drone tra-
jectory, the Flight Controller (FC) is the main component of
interest in UAV systems. This component indeed allows to col-
lect data from sensors, compute from this data the position of
the drone and, using the given flight plan, control the signals
sent to the motors in order to move the drone in the right di-
rection. An abstract description of the flight controller is given
in Figure 1. As one can see, the FC can also be decomposed
into four main components. In the automated flight mode, only
three of them are of interest: Filter, PID and Modulation. Fil-
ter is the component that receives the data from sensors and

cleans this data in order to enhance its accuracy. PID is the component that computes the drone position
according to the data received from the filter and computes the commands that are then sent to the motors
through modulation.

Apart from component failure (which we do not consider here), the only reason why a drone could deviate
from its flight plan is when the estimated position of the drone is inaccurate, resulting in erroneous commands
sent to the motors. Such an inaccurate estimated position occurs when the data sent from the sensors is
erroneous and/or when the correction produced by the filter is ineffective. In our formal model, we therefore
introduce parameters that represent the probability that the estimated position of the drone is inaccurate:
F0 (resp. F1, F2, F3, F4) represents the probability that the estimated position is from 0 to 2m (resp.
2 − 4m, 4 − 6m, 6 − 8m, 8 − 10m) from the real position.

2.2 Security Zones

Fig. 2: Security zone

As explained earlier, we are interested in computing the prob-
ability of a drone deviating enough from its given flight plan
in order to endanger the public. In agreement with software
considerations in airborne systems and equipment certification
(named DO-178C), we define 5 levels of security zones that are
represented in Figure 2.

The size of each security zone is defined depending on the
context of the flight plan. In our case, the size of the zones were
fixed by PIXIEL, with the following semantics: no humans are
allowed in Zones 1-3, while employees (resp. public) can only go to Zone 4 – 8m (resp. 50m) from the intended
trajectory. In this context, the probability of an accident involving humans is directly proportional to the
probability of a drone entering Zones 4 or 5.

2.3 Formal Model

Our formal model is summarised in Figure 3. In this model, the position of the drone is computed as coordi-
nates along the three axes. We assume that the drone starts from the origin and moves from point to point
along its flight plan. One complete loop of the model corresponds to one period of the FC, i.e. position estima-
tion using filtered data and computation of the next position according to the current deviation from the flight
plan.
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Fig. 3: Overall behaviour of the
FCS

In addition, we also consider that wind can blow on the scene and deviate
the drone. There are three stages in our model: Stage (1) takes into ac-
count the probability that estimated position is erroneous because of the
inaccuracy of sensors and filters (parameters F0, F1, F2, F3 and F4). In
Stage (2), we use the current estimated position to compute the intended
next position of the drone (and the corresponding security zone), before
wind perturbation. Finally, the wind is taken into account in Stage (3)
and the effective next position is computed as well as the corresponding
security zone. In our model, wind direction is constant but wind force is
also parametric.

3 Parametric Statistical Model Checking

Our formal model is a parametric Markov Chain (pMC). Formal veri-
fication techniques for such models exist, but are complex and subject
to state-space explosion. In practice, existing tools such as PRISM [7]
and PARAM [5] can handle models with a few thousand states and a
small number of parameters. Since the drone position is modelled using
reals, and our model contains 10 parameters, it cannot be handled using
standard model-checking methods.

We therefore use a technique called parametric statistical model check-
ing in order to approximate this probability with formal guarantees. Like
Statistical Model Checking [9] (SMC), pSMC uses random simulations
in order to compute an approximation of the chosen probability. It al-
lows to compute the probability of satisfying a given (linear) property as
well as the associated confidence interval as polynomial functions of the

parameters. The details of this technique are explained in [1].

4 Experimentation and Results

We have implemented our technique in a prototype tool that takes as an input a pMC encoded in a python
program, which allows in particular to use real variables in order to encode the position of the drone. Using
this tool, we were able to compute the parametric probability of the drone entering Zones 4 or 5 on a flight
plan reduced to a straight line. Further experiments have been able to handle more complex flight plans but
the results are not presented here.

application wind Z4-5 probability

application1 without 4.929%
application1 wind(56%,44%,0%,0%) 5.786%
application1 wind(50%,25%,15%,10%) 5.833%
application2 wind(56%,44%,0%,0%) 10.91%

Table 1: Results

While PRISM and PARAM run out of memory after
a few hours of computation on a simplified model where
wind is not taken into account, our prototype tool computes
20 000 simulations in about 3 minutes with our most com-
plex model that includes wind parameters. The obtained
parametric probabilities are unfortunately too complex to
present in this paper, but Table 1 shows the evaluation of

the obtained polynomials for precision parameter values obtained through practical experimentation and
wind probabilities representative of the weather in Nantes, France. For this experiment, we have set the
duration of the flight to 5 seconds, the frequency of the filter and position sensors to 4 Hz. For application1,
precision parameters are set to 0.15, 0.3, 0.4, 0.1 and 0.05 respectively. For application2, precision parameters
are set to 0.1, 0.25, 0.35, 0.2 and 0.1 respectively. The wind parameters correspond to the probability of
having a wind force of 0 − 20km/h, 20 − 30km/h, 30 − 50km/h and 50 − 70km/h respectively.
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