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Results of the quantitative analysis of systems modeled as Markov chains crucially
depend on the concrete transition probabilities. Even small perturbations of the prob-
ability values can affect the analysis results. This can be problematic in cases where
only estimates of the transition probabilities are available. This, for instance, applies to
cases where the values of transition probabilities are derived using statistical or learning
methods.

This motivated the introduction of Markov chains where intervals are attached to the
transitions rather than concrete transition probabilities [24, 30,9, 14,7, 5]. Two seman-
tics have been introduced for interval-valued Markov chains. The uncertain semantics
treats interval-valued Markov chains as families of Markov chains with the same state
space and transition probabilities in the intervals. The nondeterministic semantics con-
siders interval-valued Markov chains as MDPs where the concrete probability values
are chosen nondeterministically.

Parametric Markov chains can be seen as a generalization of interval-valued models
with the uncertain semantics. Instead of intervals of potential probability values, they
use polynomial functions over a fixed set of parameters to specify the transition proba-
bilities [12, 27, 19]. Such parametric models can be seen to define a family of concrete
probabilistic models that arise by plugging in concrete values for the parameters. For-
mally, a parametric Markov chain with parameters xi,..., X is a tuple M[xq,...,xy] =
(S,E,Y) where (S, E) is a finite directed graph, i.e., S is a finite state space and E C S x S
specifies the transitions, Y': E — QIx,...,xx] a function that assigns to each transition
s — s’ a polynomial over xi,...,xy with rational coeffients, and T a finite set of poly-
nomial constraints for xp,...,xx. More precisely, I" is a finite set of constraints of the
form f < ¢ where T € Q[xy,...,Xk], X a comparison operator in {=,#,<, <, >, >} and
¢ € Q. A parameter valuation &: {xi,...,xx} — R assigning real numbers to the param-
eters is said to be admissible if (1) ZsleE(s) Y(s,s")(&1,..., &) = 1 for each non-trap
state s € S where E(s) ={s’ € S: (s,s’) € E} and (2) all constraints in I" are satisfied,
ie., f(&1,...,&x) ¢ for all f<icin I'. The (concrete) Markov chain given by an ad-
missible parameter valuation & is Mg = (S,Pg) where Pg(s,s’) =Y (s,s")(&1,..., k)
if (s,s’) € Eand Pg(s,s’) =0if (s,s’) ¢ E. Then, the semantics of M[xy,...,x] is the
family of (concrete) Markov chains induced by the admissible parameter valuations.
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Fig. 1. Parametric Markov chain for the simulation of a dice by flipping biased coins

On the left of Figure 1 a parametric Markov chain is depicted, describing a paramet-
ric variant of Knuth and Yao’s protocol for simulating a six-sided dice by coin-flipping.

Probabilities for reachability conditions (and even for all w-regular properties) can
be represented as the solution of a linear equation system A - p = b where A is a matrix
with coefficients represented as polynomials derived from Y, p is the probability vector,
and b a column vector. Thus, we can view A as a matrix over the field Q(x1,...,xxk)
of rational functions with parameters xi,...,xy and then apply Gaussian elimination
(or the related state-elimination approach known for generating regular expressions for
finite automata) to compute the solution vector p. This approach has been first pro-
posed in [12,27] and later refined using computer-algebra tools to simplify the rational
functions obtained in intermediate steps [19] or using decompositions into strongly con-
nected components and factorization techniques for polynomials [23]. These techniques
have been implemented in the tools PARAM [18], its reimplementation in PRISM [26],
and in STORM [13]. More recently, it has been observed that the expensive computations
of greatest common divisors of polynomials can be avoided using one-step fraction-free
Gaussian elimination [22]. The latter yields that the rational functions for reachabil-
ity probabilities in parametric Markov chains are computable in time O (poly(n,d)¥)
where 1 is the number of states, d the maximal degree of the polynomials in Y and k the
number of parameters. In particular, in the univariate case (k=1) or for any fixed num-
ber k of parameters, the rational functions for reachability probabilities are computable
in polynomial time. Even stronger, the problem to decide the existence of a parame-
ter valuation satisfying a Boolean combination of threshold conditions for reachability
probabilities is in P. The multivariate case is, however, challenging and threshold prob-
lems, e.g., “does there exists a parameter valuation such that the probability for reaching
a given set of states exceeds a given threshold?” lie between NP and PSPACE [30, 9,
22].

Analogous results hold for expected accumulated weights or the expected mean
payoff. If, however, the transition probabilities are non-parametric and the weights at-
tached to states are parametric then parametric expressions for the expected accumu-
lated weight or the expected mean payoff are computable in polynomial time [22].

The applications of parametric Markov chains and the algorithms to compute ra-
tional functions for reachability probabilities or expected values are manyfold. These
include the analysis of systems with unknown transition probabilities where the task is
a family-based analysis to provide guarantees for all admissible parameter valuations,
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but also the treatment of systems with tiny transition probabilities, which, e.g., applies
often to models that capture the effect of very exceptional errors and where standard
analysis techniques for the analysis fail due to numerical problems.

The parameter-synthesis problem goes one step further and asks to find parameter
valuations where a set of probability or expectation constraints holds, possibly in com-
bination with other side constraints. For a simple example, we regard the Markov chain
shown in Figure 1. While for a fair coin, x| = X, = x3, the result of the outcome “‘six”
is 1/6, one might ask how to manipulate the coins such that the probability for “six” is
1/2. Assuming the same coin is used in all rounds (i.e., x| =X, = X3), the task is to find
a value p such that (—p3 +3p> —3p +1)/(p>—p +1) = 1/2. With Newton’s method
we obtain p ~ 0.26102. While this is a toy example, several important applications of
the parameter-synthesis problem have been studied in the literature. Let us mention a
few of them.

The use of parametric model checking for supporting decision making at run-time
in adaptive software has been investigated by several authors, see, e.g., [8, 15, 16, 32].
The idea is to precompute the rational functions for a set of quantitative properties,
which can be efficiently evaluated at run-time for guiding software adaptations when
the environment changes. An iterative decision-making scheme for MDPs with interval
estimates for the transition probabilities has been proposed in [31]. This approach serves
to tackle the trade-off between accuracy, data usage and computational overhead. It suc-
cessively computes strategies that are optimal for a cost-bounded reachability condition
and checks their confidence optimality. If not, the iteration returns to data sampling.

Besides supporting decisions at run-time, the parametric approach can also be very
useful to find (nearly) optimal system configurations at design-time. For example, [1]
employs parametric model-checking techniques to find probability distributions for a
probabilistic self-stabilizing protocol that achieves minimum average recovery time.
[28] uses the parametric approach to determine (an approximation of) the optimal fre-
quency of periodic reboots for an inter-process communication protocol of a space
probe where optimality is understood with respect to the long-run availability. Another
application of parametric Markov chains in the context of fault-tolerant systems is re-
ported in [21] where the task is addressed to set the number of instructions per transac-
tion and the maximal number of repeated executions of transactions before aborting that
guarantee correct termination with probability at least 0.999 and minimize the overhead.
In [4] the model-repair problem is considered where some transition probabilities of a
Markov chain are declared to be controllable and the task is to modify the controllable
probabilities such that a PCTL property holds for the modified Markov chain and the
costs for deriving the new Markov chain are minimal. The latter is formalized using a
nonlinear cost function, which leads to a nonlinear programming problem and is shown
to be related to the optimal-controller synthesis problem for discrete linear dynami-
cal systems. An alternative model-repair approach using parametric Markov chains and
greedy methods has been proposed in [29].

Beyond parametric Markov chains, several authors have addressed the paramet-
ric setting to different and more expressive stochastic models. This includes meth-
ods to synthesize parametric rate values in continuous-time Markov chains that ensure
the validity of bounded reachability properties [20]. Timeout-synthesis problems for



4 Christel Baier

continuous-time stochastic models have been investigated, e.g., in [6, 2]. The parameter-
synthesis problem for interval Markov chains with parametric lower and upper end-
points of intervals has been addressed in [3] where methods to find concrete values
for the parameters such that the resulting interval-valued Markov chain maximizes the
probability for a reachability condition have been proposed. Parametric approaches for
MDPs have been studied in [17, 10, 11]. Another recent approach to deal with unknown
transition probabilities uses online learning techniques, e.g., applied on MDP models
in [25], where only the support of distributions is known in advance and where the task
is to synthesize a strategy that almost surely satisfies a parity condition and is nearly
optimal w.r.t. a mean-payoff objective.

References

1. Saba Aflaki, Matthias Volk, Borzoo Bonakdarpour, Joost-Pieter Katoen, and Arne Storjo-
hann. Automated fine tuning of probabilistic self-stabilizing algorithms. In 36th IEEE Sym-
posium on Reliable Distributed Systems (SRDS), pages 94-103. IEEE Computer Society,
2017.

2. Christel Baier, Clemens Dubslaff, Jubo§ Korenéiak, Antonin Kugera, and Vojtdch Rehak.
Mean-payoff optimization in continuous-time Markov chains with parametric alarms. In
14th International Conference on Quantitative Evaluation of Systems (QEST), volume 10503
of Lecture Notes in Computer Science, pages 190-206. Springer, 2017.

3. Anicet Bart, Benoit Delahaye, Paulin Fournier, Didier Lime, Eric Monfroy, and Charlotte
Truchet. Reachability in parametric interval Markov chains using constraints. Theoretical
Computer Science, 747:48-74, 2018.

4. Ezio Bartocci, Radu Grosu, Panagiotis Katsaros, C. R. Ramakrishnan, and Scott A. Smolka.
Model repair for probabilistic systems. In 7th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), volume 6605 of Lecture Notes
in Computer Science, pages 326—340. Springer, 2011.

5. Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL model checking of interval
Markov chains. In 19th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 7795 of LNCS, pages 32—46. Springer, 2013.

6. Tomds Brazdil, Lubos Korenciak, Jan Krcdl, Petr Novotny, and Vojtech Rehdk. Optimizing
performance of continuous-time stochastic systems using timeout synthesis. In 12th Inter-
national Conference on Quantitative Evaluation of Systems (QEST), volume 9259 of Lecture
Notes in Computer Science, pages 141-159. Springer, 2015.

7. Benoit Caillaud, Benoit Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and An-
drzej Wasowski. Constraint markov chains. Theoretical Computer Science, 412(34):4373—
4404, 2011.

8. Radu Calinescu, Carlo Ghezzi, Marta Z. Kwiatkowska, and Raffaela Mirandola. Self-
adaptive software needs quantitative verification at runtime. Communications of the ACM,
55(9):69-77, 2012.

9. Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-checking omega-
regular properties of interval Markov chains. In /7th Int. Conf. on Foundations of Software
Science and Computational Structures (FoSSaCS), volume 4962 of LNCS, pages 302-317.
Springer, 2008.

10. Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, Ivan Papusha,
Hasan A. Poonawala, and Ufuk Topcu. Sequential convex programming for the efficient
verification of parametric MDPs. In TACAS (2), volume 10206 of LNCS, pages 133-150,
2017.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Parameter synthesis in Markov chains: algorithms, complexity and applications 5

Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, and Ufuk Topcu. Syn-
thesis in pMDPs: A tale of 1001 parameters. In 16th International Symposium on Automated
Technology for Verification and Analysis (ATVA), volume 11138 of Lecture Notes in Com-
puter Science, pages 160—176. Springer, 2018.

Conrado Daws. Symbolic and parametric model checking of discrete-time Markov chains.
In It Int. Colloquium on Theoretical Aspects of Computing (ICTAC), volume 3407 of LNCS,
pages 280-294. Springer, 2005.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A Storm is
coming: A modern probabilistic model checker. In 29¢h Int. Conf. on Computer Aided Veri-
fication (CAV), volume 10427 of LNCS, pages 592-600. Springer, 2017.

Benoit Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej Wasowski.
Decision problems for interval markov chains. In 5th International Conference on Language
and Automata Theory and Applications (LATA ), volume 6638 of Lecture Notes in Computer
Science, pages 274-285. Springer, 2011.

Antonio Filieri, Giordano Tamburrelli, and Carlo Ghezzi. Supporting self-adaptation via
quantitative verification and sensitivity analysis at run time. IEEE Transactions on Software
Engineering, 42(1):75-99, 2016.

Simos Gerasimou. Runtime quantitative verification of self-adaptive systems. PhD thesis,
University of York, UK, 2016.

Ernst Moritz Hahn, Tingting Han, and Lijun Zhang. Synthesis for PCTL in parametric
markov decision processes. In NASA Formal Methods - Third International Symposium
(NFM), volume 6617 of Lecture Notes in Computer Science, pages 146—161. Springer, 2011.
Ernst Moritz Hahn, Holger Hermanns, Bjorn Wachter, and Lijun Zhang. PARAM: A model
checker for parametric Markov models. In 22nd Int. Conference on Computer Aided Verifi-
cation (CAV), volume 6174 of LNCS, pages 660-664. Springer, 2010.

Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability for para-
metric Markov models. Int. Journal on Software Tools for Technology Transfer, 13(1):3-19,
2011.

Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. Approximate parameter syn-
thesis for probabilistic time-bounded reachability. In 29th IEEE Real-Time Systems Sympo-
sium (RTSS), pages 173-182. IEEE Computer Society, 2008.

Linda Herrmann, Christel Baier, Christof Fetzer, Sascha Kliippelholz, and Markus
Napierkowski. Formal parameter synthesis for energy-utility-optimal fault tolerance. In
15th European Workshop on Computer Performance Engineering (EPEW), volume 11178
of Lecture Notes in Computer Science, pages 78-93. Springer, 2018.

Lisa Hutschenreiter, Christel Baier, and Joachim Klein. Parametric Markov chains: PCTL
complexity and fraction-free Gaussian elimination. In 8th Int. Symp. on Games, Automata,
Logics and Formal Verification (GandALF), volume 256 of EPTCS, pages 16-30, 2017.
Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Abrahém, Joost-Pieter
Katoen, and Bernd Becker. Accelerating parametric probabilistic verification. In 11th Con-
ference on Quantitative Evaluation of Systems (QEST), volume 8657 of LNCS, pages 404—
420. Springer, 2014.

Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of probabilistic
processes. In Sixth Annual Symposium on Logic in Computer Science (LICS), pages 266—
277. IEEE Computer Society, 1991.

Jan Kretinsky, Guillermo A. Pérez, and Jean-Frangois Raskin. Learning-based mean-payoff
optimization in an unknown MDP under omega-regular constraints. In 29th International
Conference on Concurrency Theory (CONCUR), volume 118 of LIPIcs, pages 8:1-8:18.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.



6

26.

217.

28.

29.

30.

31.

32.

Christel Baier

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In 23rd International Conference on Computer Aided Verification
(CAV), volume 6806 of Lecture Notes in Computer Science, pages 585-591, 2011.

Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. Parametric probabilistic
transition systems for system design and analysis. Formal Aspects of Computing, 19(1):93—
109, 2007.

Linda Leuschner, Martin Kiittler, Tobias Stumpf, Christel Baier, Hermann Hértig, and Sascha
Klippelholz. Towards automated configuration of systems with non-functional constraints.
In 16th Workshop on Hot Topics in Operating Systems (HotOS), pages 111-117. ACM, 2017.
Shashank Pathak, Erika Abrahdm, Nils Jansen, Armando Tacchella, and Joost-Pieter Katoen.
A greedy approach for the efficient repair of stochastic models. In 7th International Sympo-
sium on NASA Formal Methods (NFM), volume 9058 of Lecture Notes in Computer Science,
pages 295-309. Springer, 2015.

Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking Markov chains in the
presence of uncertainties. In 12th Int. Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 3920 of LNCS, pages 394-410. Springer,
2006.

Guoxin Su, Taolue Chen, Yuan Feng, David S. Rosenblum, and P. S. Thiagarajan. An it-
erative decision-making scheme for Markov decision processes and its application to self-
adaptive systems. In 19th International Conference on Fundamental Approaches to Software
Engineering (FASE), volume 9633 of Lecture Notes in Computer Science, pages 269-286.
Springer, 2016.

Guoxin Su, David S. Rosenblum, and Giordano Tamburrelli. Reliability of run-time quality-
of-service evaluation using parametric model checking. In 38th International Conference on
Software Engineering (ICSE), pages 73-84. ACM, 2016.



