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Motivation

Control of gene expression for a population of cells

credits: G. Batt

I cell population
I gene expression monitored

through fluorescence level
I drug injections affect all cells
I response varies from cell to cell
I obtain a large proportion of cells

with desired gene expression level

I arbitrary nb of components
I full observation

I uniform control
I non-det. model for single

cell
I global reachability objective
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Problem formalisation

I population of N identical NFA
I uniform control policy under full observation
I resolution of non-determinism by an adversary
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config: # copies in each state

I controller chooses the action (e.g. a)
I adversary chooses how to move each individual copy (a-transition)

Question can one control the population to ensure that for all
non-deterministic choices all NFAs simultaneously reach a target set?
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Population control

Fixed N: build finite 2-player game, identify global target states, decide
if controller has a winning strategy for a reachability objective

Challenge: Parameterized control

∀N ∃σ ∀τ (AN , σ, τ) |= 3F N?
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This talk
I decidability and complexity
I memory requirements for controller σ
I admissible values for N
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Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

∃σ ∀τ(AN , σ, τ) |= 3F N =⇒ ∀M ≤ N ∃σ ∀τ(AM , σ, τ) |= 3F M

Cutoff: smallest N for which controller has no winning strategy

q1

...

qM

F

b

b

b
A\a1

A\aM

b

A∪{b}

A = {a1, · · · , aM}
unspecified edges lead to a sink state

winning σ if N < M
play b then ai s.t. qi is empty

winning τ for N = M
always fill all qi ’s

cutoff is M

Controlling a population of NFA – Nathalie Bertrand Workshops SynCoP & PV, April 2018– 5/ 16



Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

∃σ ∀τ(AN , σ, τ) |= 3F N =⇒ ∀M ≤ N ∃σ ∀τ(AM , σ, τ) |= 3F M

Cutoff: smallest N for which controller has no winning strategy

q1

...

qM

F

b

b

b
A\a1

A\aM

b

A∪{b}

A = {a1, · · · , aM}
unspecified edges lead to a sink state

winning σ if N < M
play b then ai s.t. qi is empty

winning τ for N = M
always fill all qi ’s

cutoff is M

Controlling a population of NFA – Nathalie Bertrand Workshops SynCoP & PV, April 2018– 5/ 16



Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

∃σ ∀τ(AN , σ, τ) |= 3F N =⇒ ∀M ≤ N ∃σ ∀τ(AM , σ, τ) |= 3F M

Cutoff: smallest N for which controller has no winning strategy

q1

...

qM

F

b

b

b
A\a1

A\aM

b

A∪{b}

A = {a1, · · · , aM}
unspecified edges lead to a sink state

winning σ if N < M
play b then ai s.t. qi is empty

winning τ for N = M
always fill all qi ’s

cutoff is M

Controlling a population of NFA – Nathalie Bertrand Workshops SynCoP & PV, April 2018– 5/ 16



Lower bound on the cutoff

F

··· 2M bottom states
(here 6)
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I ∀N ≤ 2M , ∃σ, AN |= ∀σ3F N

accumulate copies in bottom states, then u/d to converge
I for N > 2M controller cannot avoid reaching the sink state

Cutoff O(2|A|)

Combined with a counter, cutoff is even doubly exponential!
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A natural attempt: the support game

1 2 3 4
a

a
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b

Assumption: if state 2 or 4 is empty, controller wins

Support game: 2 Eve chooses action
3 Adam chooses transfer graph (footprint of copies’ moves)

1,2,3,4

1,3,4

objective for Eve: reach green states

1,2,3

a b

If Eve wins support game then controller has a winning strategy for all N
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Support game is not equivalent to population game

I controller alternates a and b ;
I adversary must always fill 2 and 4 in the b-step
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···

infinitely many leaks from the white flow

Above play from support game is not realisable in population control
I Controller wins with (ab)ω!
I Eve loses the support game
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Capacity game: refining winning condition of support game

a a

a

a
G

•

•

•

•

•

•
H

•

•

•

•
G G

•

•
H

· · ·

accumulator

Finite capacity play: all accumulators have finitely many entries
Bounded capacity play: finite bound on # entries for accumulators

Bounded capacity
I corresponds to realizable plays
I does not seem to be regular

Capacity game: Eve wins a play if either it reaches a subset of F , or
it does not have finite capacity.

Eve wins capacity game iff Controller has a winning strategy for all N
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Solving the capacity game in 2EXPTIME

The set of plays with infinite capacity is ω-regular

0 1
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· · ·

i

q
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

· · ·
Future(q, i)

Non-deterministic Büchi automaton
1. guesses a step i , and state q
2. checks that the accumulator Future(q, i) has infinitely many entries

I Non-det. Büchi determinized into det. parity automaton
I Resolution of doubly exp. parity game

2EXPTIME decision procedure in the size of NFA A
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Solving the capacity game in EXPTIME

Ad-hoc deterministic parity automaton with
# states = simply exponential in |A| # priorities = polynomial in |A|

•q
•x

•
•y

G H

x → y enters accumulator Future(q)

•q
•x

• t

G

G separates pair (t, x)

I entries arise from separated pairs
I tracking transfer graphs separating new pairs is sufficient

Parity game:
capacity game enriched with tracking lists in states
priorities reflect how the tracking list evolves (removals, shifts, etc.)

Parity game is equivalent to capacity game.
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Complexity of the population control problem

Theorem:
The population control problem is EXPTIME-complete.

Upper bound :
I population control problem ≡ capacity game
I capacity game ≡ ad hoc parity game
I solving parity game of size exp. and poly. priorities

Lower bound : encoding of poly space alternating Turing machine
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Summary of results

Uniform control of a population of identical NFA
I parameterized control problem: gather all copies in F
I (surprisingly) quite involved!
I tight results for complexity, cutoff, and memory

I complexity: EXPTIME-complete decision problem
I bound on cutoff: doubly exponential
I memory requirement: exponential memory (orthogonal to supports)

is needed and sufficient for controller
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Back to motivations
Control of gene expression for a population of cells

credits: G. Batt

I need for truely probabilistic model
→ MDP instead of NFA

I need for truely quantitative questions
→ proportions and probabilities instead of convergence and
(almost)-sure

∀N max
σ

Pσ(AN |= 3 at least 80% of MDPs in F )≥ .7?
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Probabilistic population

Discrete approximation of probabilistic automata

a,1/2

b

a,1/2 a

a,1/2

b

a,1/2 a

Gap: optimal reachability probability not continuous when N →∞

F
a,1/

2

a,1/2

b u

d

d

u
b

a,b

I ∀N,∃σ, Pσ(3F N) = 1.
I In the PA, the maximum

probability to reach F is .5.

Good news? hope for alternative more tractable semantics for PA
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ενχαριστώ!
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