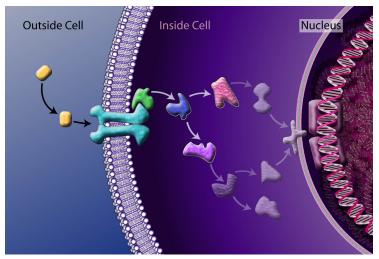
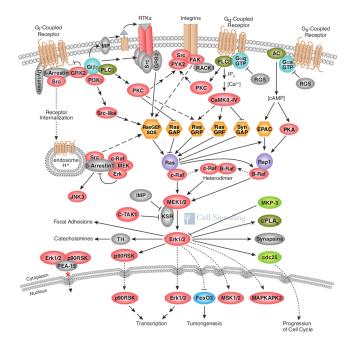
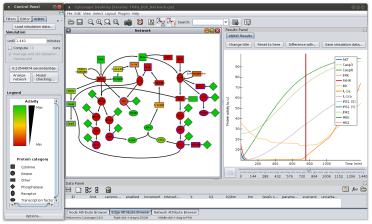
UNIVERSITY OF TWENTE.

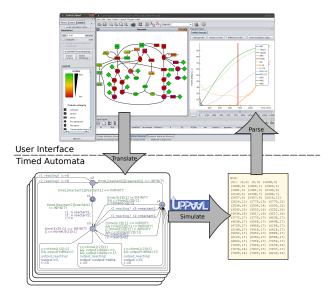

Setting parameters for biological models with ANIMO

Stefano Schivo, Jetse Scholma, Marcel Karperien, Janine N. Post, Jaco van de Pol, Rom Langerak University of Twente, Enschede, The Netherlands SynCoP 2014

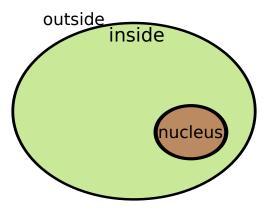


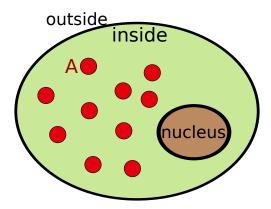
Signalling Pathways

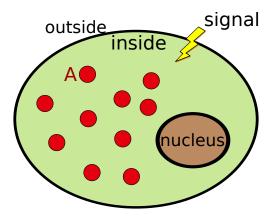


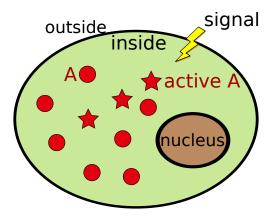

Credit: National Science Foundation

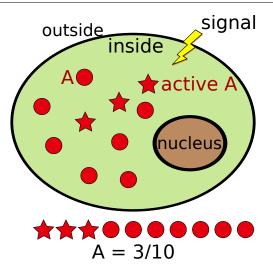
G-Protein Coupled Receptor Signaling to MAPK/ERK

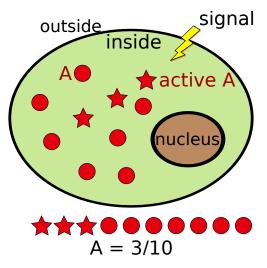

Interaction based






UNIVERSITY OF TWENTE.


- Interaction based
- Discrete concentration/activity levels



Let the user choose granularity: 2 - 100 discrete levels

UNIVERSITY OF TWENTE.

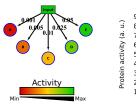
- Interaction based
- Discrete concentration/activity levels
- Precise reactions \Rightarrow abstract *interactions*

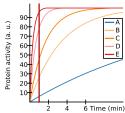
- Interaction based
- Discrete concentration/activity levels
- Precise reactions \Rightarrow abstract *interactions*


 $E + S + ATP \rightleftharpoons ES + ATP \rightarrow ES^{P} + ADP \rightleftharpoons E + S^{P} + ADP$

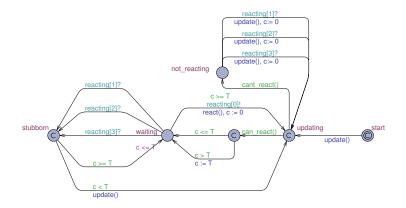
(with $S + S^P$ = constant and ATP + ADP = constant)

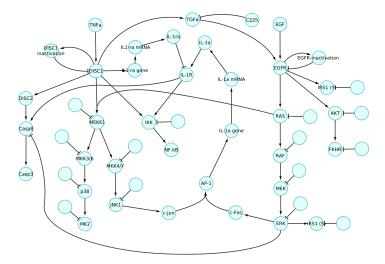
- Interaction based
- Discrete concentration/activity levels
- Precise reactions \Rightarrow abstract *interactions*


 $E + S + ATP \rightleftharpoons ES + ATP \rightarrow ES^{P} + ADP \rightleftharpoons E + S^{P} + ADP$

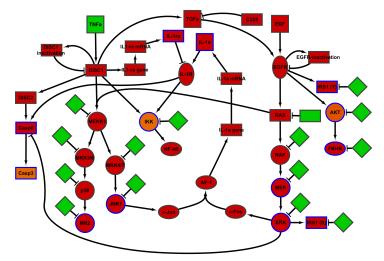

(with $S + S^P$ = constant and ATP + ADP = constant)

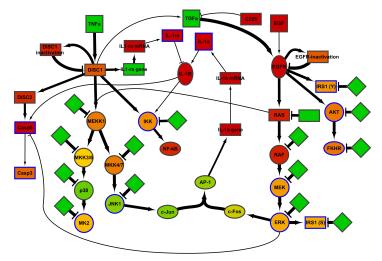
- Interaction based
- Discrete concentration/activity levels
- Precise reactions \Rightarrow abstract *interactions*
- Simplified scenarios for rate computation

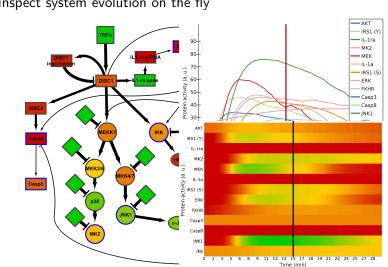




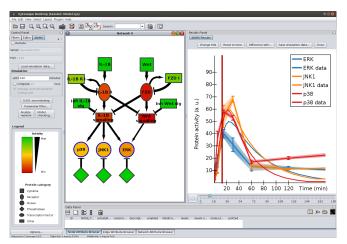
UNIVERSITY OF TWENTE.


Timed Automata model


Start from static network topology


Add kinetics and choose initial activities

Inspect system evolution on the fly


Inspect system evolution on the fly AKT IRS1 (Y) IL-1ra 90-MK2 80-- MEK IL-1a 70-Protein activity (a. u.) 6 0 0 0 0 0 0 - IRS1 (S) -ra ge - ERK FKHR Casp3 Casp8 JNK1 IKK MEKK 20 IKK 10-10 12 14 16 18 20 22 24 Time (min 8 IKK3/ Casp3 MEK p38 JNK1 -Fo MK2 ERK RS1 (S)

Inspect system evolution on the fly

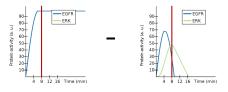
UNIVERSITY OF TWENTE.

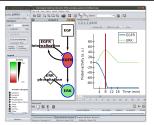
Experimental data as reference

Use data and model to improve knowledge, generate hypotheses.

UNIVERSITY OF TWENTE.

All good and nice, but...

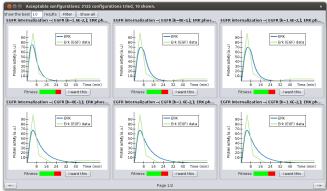

How to find the parameters?


nfluence				
Activation O Inhibition				
Reaction k	inetics			
	Scenar	'io 2: k * [E] * [S]	•	
r.	E = active E S = inactive	S		
0.008000				
v. slow	slow	medium	fast	v. fas
escriptio	a			
		tivation of subst		me.
		ournal of Sometr	ning, 2015	
Simplifica Ref: John	onner oc any j			

All good and nice, but...

How to find the parameters?

- Insert parameters manually
- Compare model versions subtracting their activity graphs



UNIVERSITY OF TWENTE.

All good and nice, but...

How to find the parameters?

- Insert parameters manually
- Compare model versions subtracting their activity graphs
- Perform automatic parameter scans

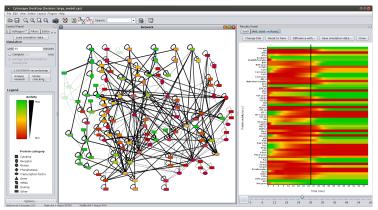
ANIMO live demo

 ► Cytoscape → static representation, Timed Automata → dynamic behaviour

- ► Cytoscape → static representation, Timed Automata → dynamic behaviour
- Discrete levels and simplified scenarios \rightarrow few parameters

- ► Cytoscape → static representation, Timed Automata → dynamic behaviour
- \blacktriangleright Discrete levels and simplified scenarios \rightarrow few parameters
- Modelling with ANIMO:
 - outline pathway topology
 - select reaction parameters
 - compare model with existing data
 - repeat until satisfied

- ► Cytoscape → static representation, Timed Automata → dynamic behaviour
- \blacktriangleright Discrete levels and simplified scenarios \rightarrow few parameters
- Modelling with ANIMO:
 - outline pathway topology
 - select reaction parameters
 - compare model with existing data
 - repeat until satisfied
- ANIMO allows biologists to draw network "sketches"


- ► Cytoscape → static representation, Timed Automata → dynamic behaviour
- \blacktriangleright Discrete levels and simplified scenarios \rightarrow few parameters
- Modelling with ANIMO:
 - outline pathway topology
 - select reaction parameters
 - compare model with existing data
 - repeat until satisfied
- ANIMO allows biologists to draw network "sketches"
- Parameter choice:
 - manual settings, choice of qualitative parameters
 - comparison of different model versions
 - parameter sweeps

Deal with parameter sensitivity and model robustness

Deal with parameter sensitivity and model *robustness* Typically, biological networks are robust: smaller parameter variations do not change the behavior of the network

- Deal with parameter sensitivity and model *robustness* Typically, biological networks are robust: smaller parameter variations do not change the behavior of the network
- ► Get a model by feeding data: Automata Learning

- ► Deal with parameter sensitivity and model *robustness*
- ► Get a model by feeding data: Automata Learning
- ► Use *in-silico experiments* to infer biological hypotheses which can be verified through in-vitro experiments

UNIVERSITY OF TWENTE.

ANIMO - Analysis of Networks with Interactive MOdeling

- Deal with parameter sensitivity and model *robustness* Typically, biological networks are robust: smaller parameter variations do not change the behavior of the network
- ► Get a model by feeding data: Automata Learning
- ► Use *in-silico experiments* to infer biological hypotheses which can be verified through in-vitro experiments
- Abstraction techniques to deal with large models

Thank you

Analysis of Networks with Interactive MOdelling

http://fmt.cs.utwente.nl/tools/animo

