Inapproximability Ratios for Crossing Number

Rafael Veiga Pocai
Universidade de São Paulo

September 14, 2017
A drawing of a graph G is a function $D : G \rightarrow \mathbb{R}^2$ that maps each vertex to a distinct point and each edge $uv \in E(G)$ to an arc connecting $D(u)$ to $D(v)$ that does not contain the image of any other vertex.
A crossing occurs whenever the image of two edges coincide somewhere other than their extremes.
The crossing number \(cr(D) \) of the drawing \(D \) is the sum, for all pairs \(e, e' \) of edges, of all crossings between \(D(e) \) and \(D(e') \).
The crossing number $\text{cr}(D)$ of the drawing D is the sum, for all pairs e, e' of edges, of all crossings between $D(e)$ and $D(e')$.

When the edges e and e' have weights $w(e)$ and $w(e')$, each crossing counts $w(e)w(e')$ to the sum.
Crossing Number

- The crossing number \(\text{cr}(D) \) of the drawing \(D \) is the sum, for all pairs \(e, e' \) of edges, of all crossings between \(D(e) \) and \(D(e') \).
- When the edges \(e \) and \(e' \) have weights \(w(e) \) and \(w(e') \), each crossing counts \(w(e)w(e') \) to the sum.
- The minimum crossing number of all drawings of \(G \) is denoted by \(\text{cr}(G) \).
The crossing number $cr(D)$ of the drawing D is the sum, for all pairs e, e' of edges, of all crossings between $D(e)$ and $D(e')$.

When the edges e and e' have weights $w(e)$ and $w(e')$, each crossing counts $w(e)w(e')$ to the sum.

The minimum crossing number of all drawings of G is denoted by $cr(G)$.

Crossing Number Problem

Input: A graph G.

Output: A drawing of G whose crossing number is $cr(G)$.
Garey and Johnson (1983) showed Crossing Number is NP-hard.
Garey and Johnson (1983) showed Crossing Number is NP-hard.

Hliněný (2006) showed the result holds for cubic graphs.
Garey and Johnson (1983) showed Crossing Number is NP-hard.

Hliněný (2006) showed the result holds for cubic graphs.

Cabello and Mohar (2013) proved it for near-planar graphs.
Garey and Johnson (1983) showed Crossing Number is NP-hard.
Hliněný (2006) showed the result holds for cubic graphs.
Cabello and Mohar (2013) proved it for near-planar graphs.
Chuzhoy (2011) presented an approximation algorithm of ratio $O(n^{\frac{9}{10}} \text{poly}(\Delta \log n))$.
Garey and Johnson (1983) showed Crossing Number is NP-hard.

Hliněný (2006) showed the result holds for cubic graphs.

Cabello and Mohar (2013) proved it for near-planar graphs.

Chuzhoy (2011) presented an approximation algorithm of ratio $O(n^{9/10} \text{poly}(\Delta \log n))$.

Cabello (2013) showed there is a constant $c > 1$ such that it is NP-hard to approximate Crossing Number by a constant ratio less than c.
• Garey and Johnson (1983) showed Crossing Number is NP-hard.
• Hliněný (2006) showed the result holds for cubic graphs.
• Cabello and Mohar (2013) proved it for near-planar graphs.
• Chuzhoy (2011) presented an approximation algorithm of ratio $O(n^{9/10} \text{poly}(\Delta \log n))$.
• Cabello (2013) showed there is a constant $c > 1$ such that it is NP-hard to approximate Crossing Number by a constant ratio less than c.
• Here, some precise values for such a c are presented.
For simplicity, weighted graphs will be used in the constructions.

Despite of this, the results also apply for unweighted graphs.

For translating a weighted result to the unweighted case, it is enough to substitute each weighted edge \(e = uv \), whose weight \(w(e) \) is a positive integer, by \(w(e) \) parallel paths connecting \(u \) to \(v \).
Weighted Edges

\[w = 4 \]
Multiway Cut

Input: A graph G and a set $T \subset V(G)$ of terminals.

Output: The minimum set $C \subset E(G)$ such that the vertices in T are disconnected in $G \setminus C$.
Maximum Cut

Input: A graph G.

Output: The set $X \subset V(G)$ with largest $\delta(X)$.
Given a graph G with n vertices and m edges, we construct a new graph G' as follows.

- For each vertex in G, create a gadget composed of five vertices and heavy edges (weighting m^3):
Seat the gadgets on a circular frame, also made by heavy edges:
For every edge $uv \in E(G)$, link the opposite sides of the corresponding gadgets with light edges (with unitary weight):
New Reduction

- Note that solving Crossing Number for the constructed graph is the same as deciding, for each vertex, on which side to put the blue and the red ends.
- Moreover, deciding the side of the blue and red ends is equivalent to solving Maximum Cut on the original graph.
Let:

- A_{cr} be a polynomial-time c-approximation algorithm for Crossing Number.
- A_{mc} be a polynomial-time approximation for Maximum Cut derived from A_{cr}.
- $\overline{mc}(G)$ be the size of the returned by A_{mc} applied to G.
- $\overline{cr}(G)$ be the number of crossings in the drawing returned by A_{cr} applied to G'.
Let:

- \(A_{cr} \) be a polynomial-time \(c \)-approximation algorithm for Crossing Number.
- \(A_{mc} \) be a polynomial-time approximation for Maximum Cut derived from \(A_{cr} \).
- \(\overline{mc}(G) \) be the size of the returned by \(A_{mc} \) applied to \(G \).
- \(\overline{cr}(G') \) be the number of crossings in the drawing returned by \(A_{cr} \) applied to \(G' \).

Lemma 1

\[
2m^3(m - \overline{mc}(G)) \leq \overline{cr}(G')
\]

Lemma 2

\[
\overline{cr}(G') \leq 2m^3(m - mc(G)) + 4m^2
\]
Lemma 1

\[2m^3(m - mc(G)) \leq \text{cr}(G') \]

Lemma 2

\[\text{cr}(G') \leq 2m^3(m - mc(G)) + 4m^2 \]
Applying Lemmas 1 and 2:

\[2m^3 (m - \overline{mc}(G')) \leq \overline{cr}(G') \]

\[\leq c \cdot \text{cr}(G') \]

\[\leq 2cm^3 (m - mc(G')) + c4m^2. \]
Approximation Ratio of A_{mc}

- Applying Lemmas 1 and 2:

$$2m^3(m - \overline{mc}(G)) \leq \overline{cr}(G') \leq c \overline{cr}(G') \leq 2cm^3(m - mc(G)) + c4m^2.$$

- Assuming G is not bipartite:

$$m - \overline{mc}(G) \leq c(m - mc(G)) + \frac{2c}{m} \leq c(m - mc(G)) + \frac{2c(m - mc(G))}{m} \leq c \left(1 + \frac{2}{m}\right) \left(m - mc(G)\right) \leq c \left(1 + \frac{2}{m}\right) m - c \left(1 + \frac{2}{m}\right) mc(G).$$
The last inequality gives:

\[\overline{mc}(G') \geq c \left(1 + \frac{2}{m} \right) mc(G) + \left(1 - c \left(1 + \frac{2}{m} \right) \right) m. \]
The last inequality gives:

$$\overline{mc}(G) \geq c \left(1 + \frac{2}{m} \right) mc(G) + \left(1 - c \left(1 + \frac{2}{m} \right) \right) m.$$

$c \geq 1$ implies:

$$1 - c \left(1 + \frac{2}{m} \right) \leq 0.$$
The last inequality gives:

$$\overline{mc}(G') \geq c \left(1 + \frac{2}{m} \right) mc(G) + \left(1 - c \left(1 + \frac{2}{m} \right) \right) m.$$

$c \geq 1$ implies:

$$1 - c \left(1 + \frac{2}{m} \right) \leq 0.$$

From $mc(G') \geq \frac{m}{2}$ it follows that:

$$\overline{mc}(G') \geq c \left(1 + \frac{2}{m} \right) mc(G) + \left(1 - c \left(1 + \frac{2}{m} \right) \right) 2mc(G)$$

$$= \left(2 - c \left(1 + \frac{2}{m} \right) \right) mc(G).$$
Results

Theorem

If A_{cr} is a constant-factor polynomial c-approximation for Crossing Number, then $c \geq 2 - \frac{16}{17} \approx 1.058824$, assuming $P \neq NP$.

- It is NP-hard to approximate Maximum Cut polynomially by a constant ratio greater than $\frac{16}{17}$ (Håstad, 2001).
- A_{mc} satisfies
 $$2 - c \left(1 + \frac{2}{m}\right) \leq \frac{16}{17}.$$
- The inequality must hold for every m.

Rafael Veiga Pocai
Inapproximability Ratios for Crossing Number
Khot et al. (2007) proved that, if $P \neq NP$ and the Unique Games Conjecture is true, then the approximation ratio $\alpha \approx 0.878567$ obtained by the algorithm by Goemans and Williamson is the best possible.
Khot et al. (2007) proved that, if $P \neq NP$ and the Unique Games Conjecture is true, then the approximation ratio $\alpha \approx 0.878567$ obtained by the algorithm by Goemans and Williamson is the best possible.

Theorem

If A_{cr} is a constant-factor polynomial c-approximation for Crossing Number, then $c \geq 2 - \alpha \approx 1.121433$, assuming $P \neq NP$ and the UGC.
Thank You!
Hardness of approximation for crossing number.

Adding one edge to planar graphs makes crossing number and 1-planarity hard.

An algorithm for the graph crossing number problem.

Optimal inapproximability results for MAX-CUT and other 2-variable CSPs.