The Solitaire Clobber game and correducibility

Simone Dantas1, Rodrigo Marinho1,2 and Slobodan Tanushevski1

1 IME, Universidade Federal Fluminense, Brazil
2 Department of Mathematics, PUC-Rio, Brazil

September 12, 2017
The Solitaire Clobber game

- Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);
The Solitaire Clobber game

- Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);
The Solitaire Clobber game

- Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);
The Solitaire Clobber game

- Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);
The Solitaire Clobber game

- Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);

Reducibility:

k-reducible graph G: For any non-monochromatic initial configuration of stones, there exists a succession of moves that leaves k stones on the board.
The Solitaire Clobber game

- Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);

Reducibility:

k-reducible graph G: For any non-monochromatic initial configuration of stones, there exists a succession of moves that leaves k stones on the board.

Reducibility of a graph G:

$$r(G) := \min \{ k \geq 1 \mid G \text{ is } k\text{-reducible.} \}.$$
The Solitaire Clobber game

- Demaine, E.D., Demaine, M.L., Fleischer, R. (2004);
Correducibility

For every non-monochromatic initial configuration of stones and for every subset S of cardinality at most k, there exists a Solitaire Clobber game on G that empties S.

Example: K_3.
Correducibility

k-correducible graph G: For every non-monochromatic initial configuration of stones and for every subset $S \subseteq V(G)$ of cardinality at most k, there exists a Solitaire Clobber game on G that empties S.
Correducibility

k-correducible graph G: For every non-monochromatic initial configuration of stones and for every subset $S \subset V(G)$ of cardinality at most k, there exists a Solitaire Clobber game on G that empties S.

Example: K_3.
Correducibility

k-correducible graph G: For every non-monochromatic initial configuration of stones and for every subset $S \subseteq V(G)$ of cardinality at most k, there exists a Solitaire Clobber game on G that empties S.

Example: K_3.

Diagram of K_3: A triangle with three vertices.
Correducibility

k-correducible graph G: For every non-monochromatic initial configuration of stones and for every subset $S \subset V(G)$ of cardinality at most k, there exists a Solitaire Clobber game on G that empties S.

Example: K_3.
Correducibility

\(k \)-correducible graph \(G \): For every non-monochromatic initial configuration of stones and for every subset \(S \subset V(G) \) of cardinality at most \(k \), there exists a Solitaire Clobber game on \(G \) that empties \(S \).

Correducibility of a graph \(G \):

\[
\text{cr}(G) := \max \{ k \in \mathbb{N} \mid G \text{ is } k\text{-correducible} \}.
\]
Correducibility of complete graphs

Proposition
If $n \geq 3$, then $cr(K_n) = n^2$.

Corollary
If $|H| = n$, then $cr(H) \geq n^2$.
Correducibility of complete graphs

Proposition
If $n \geq 3$, then $cr(K_n) = n - 2$.
Correducibility of complete graphs

Proposition
If $n \geq 3$, then $cr(K_n) = n - 2$.

Corollary
If $|H| = n$, then

$$cr(H) \leq n - 2.$$
Correducibility of complete graphs

Proposition
If \(n \geq 3 \), then \(cr(K_n) = n - 2 \).

Corollary
If \(|H| = n \), then
\[
cr(H) \leq n - 2.
\]
Proposition
If $n \geq 3$, then $cr(K_n) = n - 2$.

Corollary
If $|H| = n$, then

$$cr(H) \leq n - 2.$$
Connectivity and correducibility

A graph G is k-connected if and only if every pair of vertices are joined by k pairwise internally disjoint paths.
Connectivity and coreducibility

k-connected graph G: $|G| > k$ and $G - X$ is connected for every $X \subseteq V(G)$ with $|X| < k$.

Theorem (Menger' 27)

A graph G is k-connected if and only if every pair of vertices are joined by k pairwise internally disjoint paths.
Connectivity and coreducibility

k-connected graph G: $|G| > k$ and $G - X$ is connected for every $X \subseteq V(G)$ with $|X| < k$.

Theorem (Menger’ 27)

A graph G is k-connected if and only if every pair of vertices are joined by k pairwise internally disjoint paths.
Connectivity and correducibility

A graph G is k-connected if and only if every pair of vertices are joined by k pairwise internally disjoint paths.

For all pair (v,w)
It is easy to see that a 1-correducible graph is 1-connected.
It is easy to see that a 1-correducible graph is 1-connected.
It is easy to see that a 1-correducible graph is 1-connected.
It is easy to see that a 1-correducible graph is 1-connected.

Proposition
A graph G is 1-correducible if and only if it is 1-connected.
Note that K_{k+1} is the only k-connected graph of order $k + 1$, and this graph is not k-correducible. Actually, it is $(k - 1)$-correducible.
Our main theorem states that every other k-connected graph is k-correducible.
Theorem
Let $k \geq 1$, and let G be a graph with $|G| \geq k + 2$. If G is k-connected, then it is k-correducible.
Theorem
Let $k \geq 1$, and let G be a graph with $|G| \geq k + 2$. If G is k-connected, then it is k-correducible.

Idea of the proof
Theorem
Let \(k \geq 1 \), and let \(G \) be a graph with \(|G| \geq k + 2\). If \(G \) is \(k \)-connected, then it is \(k \)-correducible.

Idea of the proof

Lemma
Let \(k \geq 1 \), and let \(G \) be a \(k \)-connected graph such that \(|G| \geq k + 2\). Given any initial configuration \(\Phi_1 : V(G) \to \{0, 1\} \) with \(|\Phi_1^{-1}(0)| = 1\) and a subset \(S \) of \(V(G) \) with \(|S| = k\), there exists a Solitaire Clobber game on \(G \) that empties \(S \).
Theorem
Let $k \geq 1$, and let G be a graph with $|G| \geq k + 2$. If G is k-connected, then it is k-correducible.

Idea of the proof

Lemma
Let $k \geq 1$, and let G be a k-connected graph such that $|G| \geq k + 2$. Given any initial configuration $\Phi_1 : V(G) \rightarrow \{0, 1\}$ with $|\Phi_1^{-1}(0)| = 1$ and a subset S of $V(G)$ with $|S| = k$, there exists a Solitaire Clobber game on G that empties S.

Now, we may always assume that $|\Phi^{-1}(0)| > 1$ and $|\Phi^{-1}(1)| > 1$.
Idea of the proof

We use induction.
Idea of the proof

We use induction.

If there exists \(v \in S \) and \(u \) adjacent to \(v \) such that \(\Phi_1(u) \neq \Phi_1(v) \):
Idea of the proof

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:
Idea of the proof

We use induction.

If there exists \(v \in S \) and \(u \) adjacent to \(v \) such that \(\Phi_1(u) \neq \Phi_1(v) \):

- \(|G| \geq k + 2;\)
Idea of the proof

We use induction.

If there exists \(v \in S \) and \(u \) adjacent to \(v \) such that \(\Phi_1(u) \neq \Phi_1(v) \):

- \(|G| \geq k + 2\);
- \(k(G) = k\);
Idea of the proof

We use induction.

If there exists \(v \in S \) and \(u \) adjacent to \(v \) such that \(\Phi_1(u) \neq \Phi_1(v) \):

- \(|G| \geq k + 2\);
- \(k(G) = k \);
- \(|S| = k\).
Idea of the proof

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:

- $|G| \geq k + 2$;
- $k(G) = k$;
- $|S| = k$.
Idea of the proof

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:

- $|G_2| \geq k + 1 = (k - 1) + 2$;
- $k(G) = k$.
- $|S| = k$.
Idea of the proof

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:

- $|G_2| \geq k + 1 = (k - 1) + 2$;
- $k(G_2) \geq k - 1$;
- $|S| = k$.
Idea of the proof

We use induction.

If there exists $v \in S$ and u adjacent to v such that $\Phi_1(u) \neq \Phi_1(v)$:

- $|G_2| \geq k + 1 = (k - 1) + 2$;
- $k(G_2) \geq k - 1$;
- $|S_2| = k - 1$.
Idea of the proof

We use induction.

If there exists \(v \in S \) and \(u \) adjacent to \(v \) such that \(\Phi_1(u) \neq \Phi_1(v) \):

- \(|G_2| \geq k + 1 = (k - 1) + 2;\)
- \(k(G_2) \geq k - 1;\)
- \(|S_2| = k - 1.\)
- \(\Phi_2\) is non-monochromatic.
Now assume that for each vertex $v \in S$ and any vertex u adjacent to v, $\Phi_1(u) = \Phi_1(v)$.

Theorem (Dirac '60)

If G is a k-connected graph (with $k \geq 2$), and S is a set of k vertices in G, then G has a cycle C including S in its vertex set.

Theorem (Fan Lemma, Dirac '60)

Let G be a k-connected graph, let x be a vertex of G, and let $Y \subseteq V(G) \setminus \{x\}$ be a set of at least k vertices of G. Then there exists a k-fan in G from x to Y (that is, a family of k internally disjoint $(x; Y)$-paths whose terminal vertices are distinct).

We may assume that the restriction of Φ_1 to $V(C)$ is non-monochromatic.

If $\Phi_1(x) = \Phi_1(y)$ for all $x, y \in S$, then there is an obvious Solitaire Clobber game on the cycle C that empties S.

Now assume that for each vertex \(v \in S \) and any vertex \(u \) adjacent to \(v \), \(\Phi_1(u) = \Phi_1(v) \).

Theorem (Dirac ‘60)

If \(G \) is a \(k \)-connected graph (with \(k \geq 2 \)), and \(S \) is a set of \(k \) vertices in \(G \), then \(G \) has a cycle \(C \) including \(S \) in its vertex set.

Theorem (Fan Lemma, Dirac ‘60)

Let \(G \) be a \(k \)-connected graph, let \(x \) be a vertex of \(G \), and let \(Y \subseteq V(G) \setminus \{x\} \) be a set of at least \(k \) vertices of \(G \). Then there exists a \(k \)-fan in \(G \) from \(x \) to \(Y \) (that is, a family of \(k \) internally disjoint \((x,Y)\)-paths whose terminal vertices are distinct).
Now assume that for each vertex \(v \in S \) and any vertex \(u \) adjacent to \(v \), \(\Phi_1(u) = \Phi_1(v) \).

Theorem (Dirac ‘60)

If \(G \) is a \(k \)-connected graph (with \(k \geq 2 \)), and \(S \) is a set of \(k \) vertices in \(G \), then \(G \) has a cycle \(C \) including \(S \) in its vertex set.

Theorem (Fan Lemma, Dirac ‘60)

Let \(G \) be a \(k \)-connected graph, let \(x \) be a vertex of \(G \), and let \(Y \subseteq V(G) \setminus \{x\} \) be a set of at least \(k \) vertices of \(G \). Then there exists a \(k \)-fan in \(G \) from \(x \) to \(Y \) (that is, a family of \(k \) internally disjoint \((x,Y)\)-paths whose terminal vertices are distinct).

We may assume that the restriction of \(\Phi_1 \) to \(V(C) \) is non-monochromatic.
Now assume that for each vertex \(v \in S \) and any vertex \(u \) adjacent to \(v \), \(\Phi_1(u) = \Phi_1(v) \).

Theorem (Dirac ‘60)

If \(G \) is a \(k \)-connected graph (with \(k \geq 2 \)), and \(S \) is a set of \(k \) vertices in \(G \), then \(G \) has a cycle \(C \) including \(S \) in its vertex set.

Theorem (Fan Lemma, Dirac ‘60)

Let \(G \) be a \(k \)-connected graph, let \(x \) be a vertex of \(G \), and let \(Y \subseteq V(G) \setminus \{x\} \) be a set of at least \(k \) vertices of \(G \). Then there exists a \(k \)-fan in \(G \) from \(x \) to \(Y \) (that is, a family of \(k \) internally disjoint \((x, Y)\)-paths whose terminal vertices are distinct).

We may assume that the restriction of \(\Phi_1 \) to \(V(C) \) is non-monochromatic.

If \(\Phi_1(x) = \Phi_1(y) \) for all \(x, y \in S \), then there is an obvious Solitaire Clobber game on the cycle \(C \) that empties \(S \).
If both S and C are non-monochromatic, we use the following lemma which extends Dirac’s Theorem.
If both S and C are non-monochromatic, we use the following lemma which extends Dirac’s Theorem.

Lemma

Let $k \geq 2$, G be a k-connected graph, $S \subseteq V(G)$ with $|S| = k$, and $T_i = \{v_{i,1}, \ldots, v_{i,s_i}\}$, $1 \leq i \leq m$, m pairwise disjoint subsets of S. Suppose that G contains a cycle C that satisfies the following condition: (\ast) For each $1 \leq i \leq m$, $(v_{i,1}, \ldots, v_{i,s_i})$ is a path in C. Then G contains a cycle that includes S in its vertex set and satisfies (\ast).
Theorem
Let G be a graph with $|G| \geq 4$. Then G is 2-connected if and only if it is 2-correducible.
Theorem

Let G be a graph with $|G| \geq 4$. Then G is 2-connected if and only if it is 2-correducible.
Theorem
Let G be a graph with $|G| \geq 4$. Then G is 2-connected if and only if it is 2-correducible.

Proposition
For all $n \geq 2$ and $k \leq n - 1$, $k(G(n, k)) = k$. In contrast, for a fixed k,$\lim_{n \to \infty} cr(G(n, k)) = \infty$.
NEXT STEPS:
° Find graphs with \(k(G) = \text{cr}(G) \);
° Study other types of connectivity;
° Determine the correducibility of some interesting graphs (e.g.: grids, tori, hypercubes, ...).
NEXT STEPS:

◦ Find graphs with $k(G)=cr(G)$;

◦ Study other types of connectivity;

◦ Determine the correducibility of some interesting graphs (e.g.: grids, tori, hypercubes, ...).
NEXT STEPS:

- Find graphs with $k(G) = cr(G)$;
- Study other types of connectivity;
NEXT STEPS:

- Find graphs with \(k(G) = cr(G)\);
- Study other types of connectivity;
- Determine the corereducibility of some interesting graphs (eg.: grids, tori, hypercubes, ...)

Thank you for your attention!

Federal Fluminense University

This research was partially supported by CAPES, CNPq and FAPERJ.