Transversals of longest paths

Juan Gutiérrez

Joint work with Márcia Cerioli, Cristina G. Fernandes, Renzo Gómez and Paloma Lima

September 14, 2017
Outline

1. Gallai’s question
2. Longest path transversal
3. Proof idea for chordal graphs
Gallai’s question

- In a connected graph, every pair of longest paths have a common vertex
Gallai’s question

- In a connected graph, every pair of longest paths have a common vertex
- Gallai’s question: *In any connected graph, is there a common vertex to all longest paths?*
Gallai’s question

- In a connected graph, every pair of longest paths have a common vertex
- Gallai’s question: *In any connected graph, is there a common vertex to all longest paths?*
- Negative answer: [Walther ’69] and [Zamfirescu ’76]
Gallai’s question

Figure: The classical 12-vertex graph with a negative answer to Gallai’s question
Gallai’s question
Gallai’s question

Transversals of longest paths

Gallai’s question

Longest path transversal

Proof idea for chordal graphs
Gallai’s question

Transversals of longest paths

Gallai’s question

Longest path transversal

Proof idea for chordal graphs
Gallai’s question

Transversals of longest paths

Gallai’s question

Longest path transversal

Proof idea for chordal graphs
Gallai’s question
Positive answer for specific graph classes

- Trees
Positive answer for specific graph classes

- Trees
- Split graphs and cacti [Klavžar and Petkovšek '90]
Positive answer for specific graph classes

- Trees
- Split graphs and cacti [Klavžar and Petkovšek ’90]
- Interval graphs [Balister ’04], Circular arc graphs [Joos ’15]
Positive answer for specific graph classes

- Trees
- Split graphs and cacti [Klavžar and Petkovšek ’90]
- Interval graphs [Balister ’04], Circular arc graphs [Joos ’15]
- 2-trees [de Rezende et al. ’13], partial 2-trees [Chen et al. ’17]
Positive answer for specific graph classes

- Trees
- Split graphs and cacti [Klavžar and Petkovšek ’90]
- Interval graphs [Balister ’04], Circular arc graphs [Joos ’15]
- 2-trees [de Rezende et al. ’13], partial 2-trees [Chen et al. ’17]
- Graphs with matching number at most three [Chen ’15]
Positive answer for specific graph classes

- Trees
- Split graphs and cacti [Klavžar and Petkovšek ’90]
- Interval graphs [Balister ’04], Circular arc graphs [Joos ’15]
- 2-trees [de Rezende et al. ’13], partial 2-trees [Chen et al. ’17]
- Graphs with matching number at most three [Chen ’15]
- \((P_5, K_{1,3})\)-free graphs, \(P_4\)-sparse graphs, starlike graphs [Cerioli and Lima ’16]
Positive answer for specific graph classes

- Trees
- Split graphs and cacti [Klavžar and Petkovšek ’90]
- Interval graphs [Balister ’04], Circular arc graphs [Joos ’15]
- 2-trees [de Rezende et al. ’13], partial 2-trees [Chen et al. ’17]
- Graphs with matching number at most three [Chen ’15]
- $(P_5, K_{1,3})$-free graphs, P_4-sparse graphs, starlike graphs [Cerioli and Lima ’16]
- $2K_2$-free graphs [Golan ’16]
Positive answer for specific graph classes

- Trees
- Split graphs and cacti [Klavžar and Petkovšek ’90]
- Interval graphs [Balister ’04], Circular arc graphs [Joos ’15]
- 2-trees [de Rezende et al. ’13], partial 2-trees [Chen et al. ’17]
- Graphs with matching number at most three [Chen ’15]
- \((P_5, K_{1,3})\)-free graphs, \(P_4\)-sparse graphs, starlike graphs [Cerioli and Lima ’16]
- \(2K_2\)-free graphs [Golan ’16]
- Dually chordal graphs [Jobson et al. ’16]
Connected graph G with n vertices
Longest path transversal

- Connected graph G with n vertices
- **Longest path transversal**: set of vertices that intersects all longest paths
Longest path transversal

- Connected graph G with n vertices
- **Longest path transversal**: set of vertices that intersects all longest paths
- $\text{lpt}(G)$: minimum size of a longest path transversal in G
Longest path transversal

- Connected graph G with n vertices
- **Longest path transversal**: set of vertices that intersects all longest paths
- $lpt(G)$: minimum size of a longest path transversal in G
- How big can $lpt(G)$ be?
Known upper bounds for $\text{lpt}(G)$

- Connected graph G
Known upper bounds for \(lpt(G) \)

- Connected graph \(G \)
- \(lpt(G) \leq \left\lfloor \frac{n}{4} - \frac{n^{2/3}}{90} \right\rfloor \) [Rautenbach and Sereni '14]
Known upper bounds for $\text{lpt}(G)$

- Connected graph G
 - $\text{lpt}(G) \leq \left\lfloor \frac{n}{4} - \frac{n^{2/3}}{90} \right\rfloor$ [Rautenbach and Sereni ’14]
 - $\text{lpt}(G) \leq 9\sqrt{n}\log n$ when G is planar with at least 2 vertices [Rautenbach and Sereni ’14]
Known upper bounds for $\text{lpt}(G)$

- Connected graph G

 - $\text{lpt}(G) \leq \left\lfloor \frac{n}{4} - \frac{n^{2/3}}{90} \right\rfloor$ [Rautenbach and Sereni ’14]

 - $\text{lpt}(G) \leq 9\sqrt{n} \log n$ when G is planar with at least 2 vertices [Rautenbach and Sereni ’14]

- $\text{lpt}(G) \leq \text{tw}(G) + 1$ where $\text{tw}(G)$ is the tree-width of G [Rautenbach and Sereni ’14]
Our results on $lpt(G)$

- Connected graph G

Transversals of longest paths
Gallai’s question
Longest path transversal
Proof idea for chordal graphs
Our results on $\text{lpt}(G)$

- Connected graph G
- If G is chordal, then $\text{lpt}(G) \leq \max\{1, \omega(G) - 2\}$, where $\omega(G)$ is the size of a maximum clique of G
Our results on $\text{lpt}(G)$

- Connected graph G
- If G is chordal, then $\text{lpt}(G) \leq \max\{1, \omega(G) - 2\}$, where $\omega(G)$ is the size of a maximum clique of G
- If G is a bipartite permutation graph, then $\text{lpt}(G) = 1$
Our results on $\text{lpt}(G)$

- Connected graph G
- If G is chordal, then $\text{lpt}(G) \leq \max\{1, \omega(G) - 2\}$, where $\omega(G)$ is the size of a maximum clique of G
- If G is a bipartite permutation graph, then $\text{lpt}(G) = 1$
- If G is a full substar graph, then $\text{lpt}(G) = 1$
Our results on $\text{lpt}(G)$

- Connected graph G
- If G is chordal, then $\text{lpt}(G) \leq \max\{1, \omega(G) - 2\}$, where $\omega(G)$ is the size of a maximum clique of G
- If G is a bipartite permutation graph, then $\text{lpt}(G) = 1$
- If G is a full substar graph, then $\text{lpt}(G) = 1$
- $\text{lpt}(G) \leq \text{tw}(G)$, where $\text{tw}(G)$ is the tree-width of G
Our results on $lpt(G)$

- Connected graph G
- If G is chordal, then $lpt(G) \leq \max\{1, \omega(G) - 2\}$, where $\omega(G)$ is the size of a maximum clique of G
- If G is a bipartite permutation graph, then $lpt(G) = 1$
- If G is a full substar graph, then $lpt(G) = 1$
- $lpt(G) \leq tw(G)$, where $tw(G)$ is the tree-width of G
- Corollary: $lpt(G) \leq 3.182\sqrt{n}$ when G is planar
Our results on $\text{lpt}(G)$

<table>
<thead>
<tr>
<th>Graph class</th>
<th>Previous</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded tree-width</td>
<td>$\text{tw} + 1$</td>
<td>tw</td>
</tr>
<tr>
<td>Chordal</td>
<td>ω</td>
<td>$\omega - 2$</td>
</tr>
<tr>
<td>Planar</td>
<td>$9\sqrt{n \log n}$</td>
<td>$3.182\sqrt{n}$</td>
</tr>
<tr>
<td>Bipartite permutation</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Full substar</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Graph classes

Figure: Results for lpt

- Yellow: our results
- Green: another people results
- White: no results
Proof idea for chordal graphs

- Use tree-decomposition
Transversals of longest paths

Gallai’s question

Longest path transversal

Proof idea for chordal graphs

Proof idea for chordal graphs

- Use tree-decomposition
- For every node of the tree, find a longest path that does not “fit into” it
Proof idea for chordal graphs

- Use tree-decomposition
- For every node of the tree, find a longest path that does not “fit into” it
- Direct some edges of this tree
Proof idea for chordal graphs

- Use tree-decomposition
- For every node of the tree, find a longest path that does not "fit into" it
- Direct some edges of this tree
- Take the last arc of a maximal directed path
Proof idea for chordal graphs

- Use tree-decomposition
- For every node of the tree, find a longest path that does not “fit into” it
- Direct some edges of this tree
- Take the last arc of a maximal directed path
- Find a contradiction
Proof idea for chordal graphs
Tree-decomposition

Clique tree: Special tree-decomposition for chordal graphs

Proposition

Any chordal graph has a tree-decomposition \((T, \mathcal{V})\) such that any \(V_t \in \mathcal{V}\) is a maximal clique [Gavril ’74]
Tree-decomposition

- Transversals of longest paths
- Gallai’s question
- Longest path transversal
- Proof idea for chordal graphs
Let S be a set of vertices in G
Crossing paths and fenced paths

- Let S be a set of vertices in G
- Let P a path in G
Transversals of longest paths

Gallai’s question

Longest path transversal

Proof idea for chordal graphs

Crossing paths and fenced paths

- Let S be a set of vertices in G
- Let P a path in G
- Assume that $P - S \not= \emptyset$ and $S - P \not= \emptyset$
Let S be a set of vertices in G
Let P a path in G
Assume that $P - S \neq \emptyset$ and $S - P \neq \emptyset$
S fences P if all vertices of $P - S$ are in one component of $G - S$
Crossing paths and fenced paths

- Let S be a set of vertices in G
- Let P a path in G
- Assume that $P - S \neq \emptyset$ and $S - P \neq \emptyset$
- S fences P if all vertices of $P - S$ are in one component of $G - S$
- Otherwise, we say that P crosses S
Crossing paths and fenced paths

Transversals of longest paths

Gallai’s question

Longest path transversal

Proof idea for chordal graphs
Crossing paths and fenced paths

Transversals of longest paths
Gallai’s question
Longest path transversal
Proof idea for chordal graphs
Crossing paths and fenced paths

- \(P \) \textit{t-touches} \(S \) if \(|P \cap S| = t \)
Crossing paths and fenced paths

- P \textit{t-touches} S if $|P \cap S| = t$
- $\omega(G)$: size of a maximum clique in G
Proof idea

Lemma

Let G be a connected chordal graph with a clique K. One of the following is true:

(a) $\text{lpt}(G) \leq \max\{1, \omega(G) - 2\}$.

(b) There exists a longest path that does not touch K.

(c) There exists a vertex v of K such that there is a longest path that is fenced by K and 1-touches K at v. Moreover, no longest path that 1-touches K at v crosses K.

(d) There exists an edge e of K such that there is a longest path that is fenced by K and 2-touches K at the end vertices of e. Moreover, no longest path that 2-touches K at the end vertices of e crosses K.
Proof idea
Main result

Theorem

For every connected chordal graph G, $\text{lpt}(G) \leq \max\{1, \omega(G) - 2\}$
Corollaries

Corollary

If G is a tree or a 2-tree, then \(lpt(G) = 1 \)

Corollary

If G is a 3-tree, then \(lpt(G) \leq 2 \)

Corollary

If G is a connected chordal planar graph, then \(lpt(G) \leq 2 \)
Transversals of longest paths

Gallai’s question

Longest path transversal

Proof idea for chordal graphs

Thank you