THE MINIMUM CHROMATIC VIOLATION PROBLEM:
A POLYHEDRAL APPROACH

M. Bragaa D. Delle Donnea J. Marencoa
M. Escalanteb,c M.E. Ugartec M.C. Varaldoc

aICI, Universidad Nacional de General Sarmiento
bCONICET
cFCEIA, Universidad Nacional de Rosario

ARGENTINA

Partially supported by PIP CONICET 0277

LAGOS 2017
Marseille - France
• Chromatic violation problem in a graph.
Summary

- Chromatic violation problem in a graph.

- $P_{CV}(G, E, F)$ chromatic violation polytope.
Chromatic violation problem in a graph.

\(P_{CV}(G,E,F) \) chromatic violation polytope.

Limit cases: Coloring polytope \(P_{col}(G,E) \) and \(k \)-partition polytope \(P_k(G) \).
Summary

- Chromatic violation problem in a graph.

- $P_{CV}(G, E, F)$ chromatic violation polytope.

- Limit cases: Coloring polytope $P_{col}(G, E)$ and k-partition polytope $P_k(G)$.

- Polyhedral study of $P_{CV}(G)$.
Summary

- Chromatic violation problem in a graph.
- \(P_{CV}(G, E, F) \) chromatic violation polytope.
- Limit cases: Coloring polytope \(P_{col}(G, E) \) and \(k \)-partition polytope \(P_k(G) \).
- Polyhedral study of \(P_{CV}(G) \).
- General Lifting Procedure for generating valid inequalities
Summary

- Chromatic violation problem in a graph.

- \(P_{CV}(G, E, F) \) chromatic violation polytope.

- Limit cases: Coloring polytope \(P_{col}(G, E) \) and \(k \)-partition polytope \(P_k(G) \).

- Polyhedral study of \(P_{CV}(G) \).

- General Lifting Procedure for generating valid inequalities

- Families of new facets without using Lifting Procedure
Vertex coloring

- **k-coloring** of $G = (V, E)$: partition of V into k stable sets.
- **vertex coloring problem (VCP):** smallest k needed to color the nodes of G
Definitions

Vertex coloring

- **k-coloring** of $G = (V, E)$: partition of V into k stable sets.

- vertex coloring problem (VCP): smallest k needed to color the nodes of G
Definitions

Vertex coloring
- **k-coloring** of $G = (V, E)$: partition of V into k stable sets.
- **vertex coloring problem (VCP)**: smallest k needed to color the nodes of G

k-partition
- **k-partition** of $G = (V, E)$: partition of V into at most k nonempty sets.
- **k-partition problem (k-P)**: G edge weighted. Minimum weight r-partition, $r \leq k$.

M. Escalante
The minimum chromatic violation problem: a polyhedral approach
Definitions

Vertex coloring
- *k-coloring* of $G = (V, E)$: partition of V into k stable sets.
- *vertex coloring problem (VCP)*: smallest k needed to color the nodes of G.

k-partition
- *k-partition* of $G = (V, E)$: partition of V into at most k nonempty sets.
- *k-partition problem (k-P)*: G edge weighted. Minimum weight r-partition, $r \leq k$.

![Graph with vertex coloring and k-partition examples](image)
Our problem:

Given $G = (V, E)$, c colors, $F \subseteq E$ weak edges

Minimum chromatic violation problem (MCVP)

Find c-coloring of $G' = (V, E \setminus F)$ minimizing the weak edges with both endpoints at the same color.
Our problem:

Given $G = (V, E)$, \mathcal{C} colors, $F \subset E$ weak edges

Minimum chromatic violation problem (MCVP)

Find \mathcal{C}-coloring of $G' = (V, E \setminus F)$ minimizing the weak edges with both endpoints at the same color.

$F = \{23, 36, 46, 16\}$
Our problem:

Given $G = (V, E)$, c colors, $F \subseteq E$ weak edges

Minimum chromatic violation problem (MCVP)

Find c-coloring of $G' = (V, E \setminus F)$ minimizing the weak edges with both endpoints at the same color.

$F = \{23, 36, 46, 16\}$
Our problem:

Given $G = (V, E)$, \mathcal{C} colors, $F \subset E$ weak edges

Minimum chromatic violation problem (MCVP)

Find \mathcal{C}-coloring of $G' = (V, E \setminus F)$ minimizing the weak edges with both endpoints at the same color.

$F = \emptyset$ (VCP)

$F = E$ (k-P)
For $i \in V$ and $c \in \mathcal{C}$ let

$$x_{ic} = \begin{cases} 1 & \text{if } i \text{ colored by } c \\ 0 & \text{otherwise} \end{cases}$$

For $ij \in F$ let

$$z_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ have the same color} \\ 0 & \text{otherwise} \end{cases}$$
Integer Programming Formulation

For $i \in V$ and $c \in \mathcal{C}$ let

$$x_{ic} = \begin{cases}
1 & \text{if } i \text{ colored by } c \\
0 & \text{otherwise}
\end{cases}$$

For $ij \in F$ let

$$z_{ij} = \begin{cases}
1 & \text{if } i \text{ and } j \text{ have the same color} \\
0 & \text{otherwise}
\end{cases}$$

The MCVP is

$$\min \sum_{ij \in F} z_{ij}$$

subject to

$$\sum_{c \in \mathcal{C}} x_{ic} = 1 \quad i \in V$$

$$x_{ic} + x_{jc} \leq 1 \quad ij \in E \setminus F, c \in \mathcal{C}$$

$$x_{ic} + x_{jc} \leq 1 + z_{ij} \quad ij \in F, c \in \mathcal{C}$$

$$x_{ic}, x_{jc}, z_{ij} \in \{0, 1\} \quad i \in V, j \in V, ij \in F, c \in \mathcal{C}.$$
For $i \in V$ and $c \in C$ let
\[
 x_{ic} = \begin{cases}
 1 & \text{if } i \text{ colored by } c \\
 0 & \text{otherwise}
 \end{cases}
\]

For $ij \in F$ let
\[
 z_{ij} = \begin{cases}
 1 & \text{if } i \text{ and } j \text{ have the same color} \\
 0 & \text{otherwise}
 \end{cases}
\]

The MCVP is
\[
 \min \sum_{ij \in F} z_{ij}
\]
subject to

\[
 \sum_{c \in C} x_{ic} = 1 \quad i \in V
\]
\[
 x_{ic} + x_{jc} \leq 1 \quad ij \in E \setminus F, c \in C
\]
\[
 x_{ic} + x_{jc} \leq 1 + z_{ij} \quad ij \in F, c \in C
\]
\[
 x_{ic}, x_{jc}, z_{ij} \in \{0, 1\} \quad i \in V, j \in V, ij \in F, c \in C.
\]
The minimum chromatic violation problem: a polyhedral approach
INTEGER PROGRAMMING FORMULATION

For \(i \in V \) and \(c \in C \) let

\[
x_{ic} = \begin{cases}
1 & \text{if } i \text{ colored by } c \\
0 & \text{otherwise}
\end{cases}
\]

For \(ij \in F \) let

\[
z_{ij} = \begin{cases}
1 & \text{if } i \text{ and } j \text{ have the same color} \\
0 & \text{otherwise}
\end{cases}
\]

The **MCVP** is

\[
\min \sum_{ij \in F} z_{ij}
\]

subject to

\[
\sum_{c \in C} x_{ic} = 1 \quad i \in V
\]

\[
x_{ic} + x_{jc} \leq 1 \quad ij \in E \setminus F, c \in C
\]

\[
x_{ic} + x_{jc} \leq 1 + z_{ij} \quad ij \in F, c \in C
\]

\[
x_{ic}, x_{jc}, z_{ij} \in \{0, 1\} \quad i \in V, j \in V, ij \in F, c \in C.
\]
Chromatic violation polytope

\[P_{CV}(G, F, C) = \text{conv} \left\{ (x, z) \in \{0, 1\}^s : \begin{array}{c} \sum_{c \in C} x_{ic} = 1 \quad i \in V \\ x_{ic} + x_{jc} \leq 1 \quad ij \in E \setminus F, c \in C \\ x_{ic} + x_{jc} \leq 1 + z_{ij} \quad ij \in F, c \in C \end{array} \right\} \]

where \(s = |V||C| + |F| \).
Chromatic violation polytope

\[P_{CV}(G, F, C) = \text{conv} \left\{ (x, z) \in \{0, 1\}^s : \begin{align*}
\sum_{c \in C} x_{ic} &= 1 & i \in V \\
x_{ic} + x_{jc} &\leq 1 & ij \in E \setminus F, c \in C \\
x_{ic} + x_{jc} &\leq 1 + z_{ij} & ij \in F, c \in C
\end{align*} \right\} \]

where \(s = |V||C| + |F| \).

Observe that

- \(P_{col}(G, C) = P_{CV}(G, \emptyset, C) \) where

\[P_{col}(G, C) = \text{conv} \left\{ x \in \{0, 1\}^s : \begin{align*}
\sum_{c \in C} x_{ic} &= 1 & i \in V \\
x_{ic} + x_{jc} &\leq 1 & ij \in E, c \in C
\end{align*} \right\} \]
Chromatic violation polytope

\[P_{CV}(G, F, C) = \text{conv} \left\{ (x, z) \in \{0, 1\}^s : \begin{array}{l}
\sum_{c \in C} x_{ic} = 1 \quad i \in V \\
x_{ic} + x_{jc} \leq 1 \quad ij \in E \setminus F, c \in C \\
x_{ic} + x_{jc} \leq 1 + z_{ij} \quad ij \in F, c \in C
\end{array} \right\} \]

where \(s = |V||C| + |F| \).

Observe that

- \(P_{col}(G, C) = P_{CV}(G, \emptyset, C) \)
- \(P_k(G) \subset P_{CV}(G, E, C) \) where

\[P_k(G) = \text{conv} \left\{ (x, z) \in \{0, 1\}^s : \begin{array}{l}
\sum_{c \in C} x_{ic} = 1 \quad i \in V \\
x_{ic} + x_{jc} \leq 1 + z_{ij} \quad ij \in E, c \in C \\
-x_{ic} + x_{jc} \leq 1 - z_{ij} \quad ij \in E, c \in C \\
x_{ic} - x_{jc} \leq 1 - z_{ij} \quad ij \in E, c \in C
\end{array} \right\} \]
Chromatic violation polytope

\[
P_{CV}(G, F, \mathcal{C}) = \text{conv}\left\{ (x, z) \in \{0, 1\}^s : \begin{aligned}
\sum_{c \in \mathcal{C}} x_{ic} &= 1 & i &\in V \\
 x_{ic} + x_{jc} &\leq 1 & ij &\in E \setminus F, c \in \mathcal{C} \\
 x_{ic} + x_{jc} &\leq 1 + z_{ij} & ij &\in F, c \in \mathcal{C}
\end{aligned} \right\}
\]

where \(s = |V||\mathcal{C}| + |F| \).

Observe that

- \(P_{col}(G, \mathcal{C}) = P_{CV}(G, \emptyset, \mathcal{C}) \)
- \(P_k(G) \subset P_{CV}(G, E, \mathcal{C}) \)

Lemma

If \(|\mathcal{C}| > \chi(G - F) \) then

- \(\sum_{c \in \mathcal{C}} x_{ic} = 1, i \in V \) minimal equation system for \(P_{CV}(G) \)
Chromatic violation polytope

\[P_{CV}(G, F, \mathcal{C}) = \text{conv} \left\{ (x, z) \in \{0, 1\}^s : \begin{align*}
\sum_{c \in \mathcal{C}} x_{ic} &= 1 \quad i \in V \\
x_{ic} + x_{jc} &\leq 1 \quad ij \in E \setminus F, c \in \mathcal{C} \\
x_{ic} + x_{jc} &\leq 1 + z_{ij} \quad ij \in F, c \in \mathcal{C}
\end{align*} \right\} \]

where \(s = |V||\mathcal{C}| + |F| \).

Observe that

- \(P_{col}(G, \mathcal{C}) = P_{CV}(G, \emptyset, \mathcal{C}) \)
- \(P_k(G) \subset P_{CV}(G, E, \mathcal{C}) \)

Lemma

If \(|\mathcal{C}| > \chi(G - F)\) then

- \(\sum_{c \in \mathcal{C}} x_{ic} = 1, i \in V \) minimal equation system for \(P_{CV}(G) \)
- \(\dim(P_{CV}(G)) = |V|(|\mathcal{C}| - 1) + |F| \).
PROPOSITION

If $|\mathcal{C}| > \chi(G - F)$ then

- $x_{ic} \geq 0$, $i \in V, c \in \mathcal{C}$
- $z_{ij} \leq 1$, $ij \in F$
- $z_{ij} \geq 0$, $ij \in F$ such that $|\mathcal{C}| > \chi(G - (F \setminus \{ij\}))$, $x_{ic} + x_{jc} \leq 1 + z_{ij}$, $ij \in F$ maximal clique in $G - (F \setminus \{ij\})$
- $x_{ic} + x_{jc} \leq 1$, $ij \in E \setminus F$ maximal clique in $G - F$

are facet defining inequalities for $P_{CV}(G)$.
PROPOSITION

If $|\mathcal{C}| > \chi(G - F)$ then

- $x_{ic} \geq 0$, $i \in V, c \in \mathcal{C}$
- $z_{ij} \leq 1$, $ij \in F$
- $z_{ij} \geq 0$, $ij \in F$ such that $|\mathcal{C}| > \chi(G - (F \setminus \{ij\}))$,
- $x_{ic} + x_{jc} \leq 1 + z_{ij}$, $ij \in F$ maximal clique in $G - (F \setminus \{ij\})$
- $x_{ic} + x_{jc} \leq 1$, $ij \in E \setminus F$ maximal clique in $G - F$

are facet defining inequalities for $P_{CV}(G)$.

G $F = \{23, 36, 46, 16\}$
PROPOSITION

If $|\mathcal{C}| > \chi(G - F)$ then

- $x_{ic} \geq 0, \quad i \in V, c \in \mathcal{C}$
- $z_{ij} \leq 1, \quad ij \in F$
- $z_{ij} \geq 0, \quad ij \in F$ such that $|\mathcal{C}| > \chi(G - (F \{ij\}))$
- $x_{ic} + x_{jc} \leq 1 + z_{ij}, \quad ij \in F$ maximal clique in $G - (F \{ij\})$
- $x_{ic} + x_{jc} \leq 1, \quad ij \in E \setminus F$ maximal clique in $G - F$

are facet defining inequalities for $P_{CV}(G)$.

$G - (F \{16\})$

\[
x_{1c} + x_{6c} \leq 1 + z_{16} \text{ facet } \forall c
\]
Proposition

If $|\mathcal{C}| > \chi(G - F)$ then

- $x_{ic} \geq 0, \quad i \in V, c \in \mathcal{C}$
- $z_{ij} \leq 1, \quad ij \in F$
- $z_{ij} \geq 0, \quad ij \in F$ such that $|\mathcal{C}| > \chi(G - (F \setminus \{ij\}))$,
- $x_{ic} + x_{jc} \leq 1 + z_{ij}, \quad ij \in F$ maximal clique in $G - (F \setminus \{ij\})$
- $x_{ic} + x_{jc} \leq 1, \quad ij \in E \setminus F$ maximal clique in $G - F$

are facet defining inequalities for $P_{CV}(G)$.

$G - F$
Lemma

If \(\lambda x + \mu z \leq \lambda_0 \) non-boolean facet of \(P_{CV}(G) \) then \(\mu \leq 0 \).
Lemma

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

An instance (G_1, F_1, C_1) of MCVP is stronger than (G_2, F_2, C_2) if $G_1 = G_2$, $C_1 = C_2$ and $F_1 \subset F_2$.

M. Escalante

The minimum chromatic violation problem: a polyhedral approach
Lemma

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

Theorem

Let $H \subset F$.

$\lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G', H)$ where $G' = G - (F \setminus H)$
The minimum chromatic violation problem: a polyhedral approach

Lemma

If \(\lambda x + \mu z \leq \lambda_0 \) non-boolean facet of \(P_{CV}(G) \) then \(\mu \leq 0 \).

Theorem

Let \(H \subset F \).

\[
\lambda x + \mu_H z_H \leq \lambda_0 \text{ facet of } P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0 \text{ facet of } P_{CV}(G', H)
\]

where \(G' = G - (F \setminus H) \)

Note that: \(\lambda x \leq \lambda_0 \) facet of \(P_{col}(G') \) \(\iff \) facet of \(P_{CV}(G, F) \) where \(G' = (V, E \setminus F) \).
Lemma

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

Theorem

Let $H \subset F$.

$\lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$ facet of $P_{CV}(G', H)$ where $G' = G - (F \setminus H)$

Relationship with the k-partition problem.
Lemma

If $\lambda x + \mu z \leq \lambda_0$ non-boolean facet of $P_{CV}(G)$ then $\mu \leq 0$.

Theorem

Let $H \subset F$.

$$\lambda x + \mu_H z_H \leq \lambda_0$$ facet of $P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0$$ facet of $P_{CV}(G', H)$

where $G' = G - (F \setminus H)$

Relationship with the k-partition problem.

Recall that $P_k(G) \subset P_{CV}(G, E)$.
Lemma

If \(\lambda x + \mu z \leq \lambda_0 \) non-boolean facet of \(P_{CV}(G) \) then \(\mu \leq 0 \).

Theorem

Let \(H \subset F \).

\[
\lambda x + \mu H z_H \leq \lambda_0 \quad \text{facet of} \quad P_{CV}(G, F) \iff \lambda x + \mu H z_H \leq \lambda_0 \quad \text{facet of} \quad P_{CV}(G', H)
\]

where \(G' = G - (F \setminus H) \)

Relationship with the \(k \)-partition problem.

Recall that \(P_k(G) \subset P_{CV}(G, E) \).

Lemma

Let \(\lambda x + \mu z \leq \lambda_0 \) valid for \(P_k(G) \).

- Facet for \(P_k(G) \) and valid for \(P_{CV}(G, E) \) ⇒ facet for \(P_{CV}(G, E) \).
Lemma

If \(\lambda x + \mu z \leq \lambda_0 \) non-boolean facet of \(P_{CV}(G) \) then \(\mu \leq 0 \).

Theorem

Let \(H \subset F \).

\[
\lambda x + \mu_H z_H \leq \lambda_0 \text{ facet of } P_{CV}(G, F) \iff \lambda x + \mu_H z_H \leq \lambda_0 \text{ facet of } P_{CV}(G', H)
\]

where \(G' = G - (F \setminus H) \)

Relationship with the \(k \)-partition problem.

Recall that \(P_k(G) \subset P_{CV}(G, E) \).

Lemma

Let \(\lambda x + \mu z \leq \lambda_0 \) valid for \(P_k(G) \).

- Facet for \(P_k(G) \) and valid for \(P_{CV}(G, E) \) \(\Rightarrow \) facet for \(P_{CV}(G, E) \).
- \(\mu \leq 0 \) \(\Rightarrow \) valid for \(P_{CV}(G, E) \).
Lemma

\[\mathcal{F} = \{(x, z) \in P_{CV}(G, F \setminus \{ij\}) : \lambda x + \mu z = \lambda_0 \} \] non-empty face. Then

\[\lambda x + \mu z \leq \lambda_0 + \lambda^* z_{ij}, \]

(1)

with \(\lambda^* = \max \{ |\lambda_{vc_1} - \lambda_{vc_2}| : v \in \{i, j\} \text{ and } c_1, c_2 \in \mathcal{C} \} \) valid for \(P_{CV}(G, F) \).
LIFTING PROCEDURE AND ITS CONSEQUENCES

LEMMA

\(\mathcal{F} = \{ (x, z) \in P_{CV}(G, F \setminus \{ij\}) : \lambda x + \mu z = \lambda_0 \} \) non-empty face. Then

\[
\lambda x + \mu z \leq \lambda_0 + \lambda^* z_{ij},
\]

with \(\lambda^* = \max\{ |\lambda_{vc_1} - \lambda_{vc_2}| : v \in \{i, j\} \text{ and } c_1, c_2 \in \mathcal{C} \} \) valid for \(P_{CV}(G, F) \).

If \(\mathcal{F} \) facet and \(\exists (x, z) \in \mathcal{F}, v \in V \) and \(c_1, c_2 \in \mathcal{C} \) such that

- \(x_{vc_1} = 1 \) and \(\lambda_{vc_2} - \lambda_{vc_1} = \lambda^* \),
- \(x_{uc_2} = 0, \ \forall u \in \Gamma_s(v) \),
- \(x_{uc_2} = 0 \) or \(\mu_{vu} = 0 \) or \(z_{vu} = 1 \), \(\forall u \in \Gamma_w(v) \)

then (1) defines facet of \(P_{CV}(G) \).
Corollary

Let $K \subseteq V$ clique in G. For $c \in \mathcal{C}$, the semi-clique inequality

$$\sum_{v \in K} x_{vc} \leq 1 + \sum_{e \in F(K)} z_e$$

is valid for $P_{CV}(G)$.

M. Escalante

The minimum chromatic violation problem: a polyhedral approach
Corollary

Let $K \subseteq V$ clique in G. For $c \in \mathcal{C}$, the semi-clique inequality

$$\sum_{v \in K} x_{vc} \leq 1 + \sum_{e \in F(K)} z_e$$

is valid for $P_{CV}(G)$.

If K maximal clique in $G - (F \setminus F(K))$ and $|\mathcal{C}| > \chi(G - (F \setminus F(K)))$ then it defines a facet of $P_{CV}(G)$.
COROLLARY

Let $K \subseteq V$ clique in G. For $c \in \mathcal{C}$, the semi-clique inequality

$$
\sum_{v \in K} x_{vc} \leq 1 + \sum_{e \in F(K)} z_e
$$

is valid for $P_{CV}(G)$. If K maximal clique in $G - (F \setminus F(K))$ and $|\mathcal{C}| > \chi(G - (F \setminus F(K)))$ then it defines a facet of $P_{CV}(G)$.

$K = \{3, 4, 6\}$
Corollary

Let $K \subseteq V$ clique in G. For $c \in \mathcal{C}$, the semi-clique inequality

$$
\sum_{v \in K} x_{vc} \leq 1 + \sum_{e \in F(K)} z_e
$$

is valid for $P_{CV}(G)$.

If K maximal clique in $G - (F \setminus F(K))$ and $|\mathcal{C}| > \chi(G - (F \setminus F(K)))$ then it defines a facet of $P_{CV}(G)$.

$K = \{3, 4, 6\}$

$G - (F \setminus F(K))$

$x_{3c} + x_{4c} + x_{6c} \leq 1 + z_{34} + z_{36} + z_{46}$,

$|\mathcal{C}| > 3$

facet of $P_{CV}(G)$.
Recursively applying the Lifting Lemma
Corollary

$G' \subset SG G$ and $F(G')$ weak edges in G'. For $T \subset C$, the multirank inequality

$$\sum_{t \in T} \sum_{i \in V'} x_{it} \leq \alpha(G')|T| + \sum_{e \in F(G')} z_e$$

is valid for $P_{CV}(G)$.
Corollary

$G' \subset_{SG} G$ and $F(G')$ weak edges in G'. For $T \subset C$, the multirank inequality

$$\sum_{t \in T} \sum_{i \in V'} x_{it} \leq \alpha(G')|T| + \sum_{e \in F(G')} z_e$$

is valid for $P_{CV}(G)$.

For general G' is not easy to analyze facetness. Two particular structures: **cliques** and **odd holes**.
Corollary

$G' \subset_{SG} G$ and $F(G')$ weak edges in G'. For $T \subset \mathcal{C}$, the multirank inequality

$$\sum_{t \in T} \sum_{i \in V'} x_{it} \leq \alpha(G')|T| + \sum_{e \in F(G')} z_e$$

is valid for $P_{CV}(G)$.

Proposition

Let $K \subset V$ clique, $T \subset \mathcal{C}$. For $|\mathcal{C}| > \chi(G - (F \setminus F(K))) + 1$ and $1 \leq |T| \leq |K| \leq |\mathcal{C}| + |T|$, the multicolor clique inequality (MKI)

$$\sum_{t \in T} \sum_{i \in V'} x_{it} \leq |T| + \sum_{e \in F(K)} z_e$$

valid for $P_{CV}(G)$.

M. Escalante The minimum chromatic violation problem: a polyhedral approach
Corollary

\(G' \subset_{SG} G \) and \(F(G') \) weak edges in \(G' \). For \(T \subset \mathcal{C} \), the multirank inequality

\[
\sum_{t \in T} \sum_{i \in V'} x_{it} \leq \alpha(G')|T| + \sum_{e \in F(G')} z_e
\]

is valid for \(P_{CV}(G) \).

Proposition

Let \(K \subset V \) clique, \(T \subset \mathcal{C} \). For \(|\mathcal{C}| > \chi(G - (F \setminus F(K))) + 1 \) and

\(1 \leq |T| \leq |K| \leq |\mathcal{C}| + |T| \), the multicolor clique inequality (MKI)

\[
\sum_{t \in T} \sum_{i \in V'} x_{it} \leq |T| + \sum_{e \in F(K)} z_e
\]

valid for \(P_{CV}(G) \).

Facet of \(P_{CV}(G) \) ⇔

- \(1 \leq |T| < |K| < |\mathcal{C}| + |T| \)
- \(\nexists w \in V \setminus K \) with \(K \subseteq \Gamma_s(w) \).
Proposition

Let $H \subset V$ odd hole, $T \subset C$. For $|C| > \chi(G - (F \setminus F(H)))$ the multicolor odd hole inequality

$$\sum_{t \in T} \sum_{i \in H} x_{it} \leq |T| \left(\frac{|H| - 1}{2} + \sum_{e \in F(H)} z_e \right)$$
Proposition

Let $H \subset V$ odd hole, $T \subset C$. For $|C| > \chi(G - (F \setminus F(H)))$ the multicolor odd hole inequality

$$\sum_{t \in T} \sum_{i \in H} x_{it} \leq |T| \frac{|H| - 1}{2} + \sum_{e \in F(H)} z_e$$

Facet of $P_{CV}(G)$ \iff

- $|C| > 2$,
- $1 \leq |T| \leq 2$,
- $\nexists w \in V \setminus H$ such that $\Gamma_s(w)$ includes three consecutive vertices from H.

M. Escalante

The minimum chromatic violation problem: a polyhedral approach
PROPOSITION

Let $K \subseteq V$ clique with $F(K) = E(K)$, $T \subseteq C$ and $q_t \in \mathbb{N}$ for each $t \in T$, the multicolor combinatorial clique inequality

$$\sum_{t \in T} \sum_{i \in K} q_t x_{it} \leq \sum_{t \in T} \frac{q_t(q_t + 1)}{2} + \sum_{ij \in F(K)} z_{ij}$$

valid for $P_{CV}(G)$.\[\]
PROPOSITION

Let $K \subseteq V$ clique with $F(K) = E(K)$, $T \subseteq \mathcal{C}$ and $q_t \in \mathbb{N}$ for each $t \in T$, the multicolor combinatorial clique inequality

\[
\sum_{t \in T} \sum_{i \in K} q_t x_{it} \leq \sum_{t \in T} q_t (q_t + 1) + \sum_{ij \in F(K)} z_{ij}
\]

valid for $P_{CV}(G)$.

If $|\mathcal{C}| > \chi(G - (F \setminus F(K))) + 1$, it is facet of $P_{CV}(G) \iff$

- $\exists w \in V \setminus K$ with $K \subseteq \Gamma_{s}(w)$
- $1 \leq q_{\Sigma} < |K| < |\mathcal{C}| + q_{\Sigma}$, where $q_{\Sigma} = \sum_{t \in T} q_t$.

Not arising from the Lifting Lemma

Not a generalization of MKI: the complete graph has no strong edges.
Proposition

Let $K \subseteq V$ clique with $F(K) = E(K)$, $T \subseteq \mathcal{C}$ and $q_t \in \mathbb{N}$ for each $t \in T$, the multicolor combinatorial clique inequality

$$
\sum_{t \in T} \sum_{i \in K} q_t x_{it} \leq \sum_{t \in T} \frac{q_t(q_t + 1)}{2} + \sum_{ij \in F(K)} z_{ij}
$$

valid for $P_{CV}(G)$.

If $|\mathcal{C}| > \chi(G - (F \setminus F(K))) + 1$, it is facet of $P_{CV}(G) \iff$

- $\nexists w \in \mathcal{V} \setminus K$ with $K \subseteq \Gamma_s(w)$
- $1 \leq q_\Sigma < |K| < |\mathcal{C}| + q_\Sigma$, where $q_\Sigma = \sum_{t \in T} q_t$.

Note that

- Not arising from the Lifting Lemma
Proposition

Let \(K \subseteq V \) clique with \(F(K) = E(K) \), \(T \subseteq \mathcal{C} \) and \(q_t \in \mathbb{N} \) for each \(t \in T \), the multicolor combinatorial clique inequality

\[
\sum_{t \in T} \sum_{i \in K} q_t x_{it} \leq \sum_{t \in T} \frac{q_t(q_t + 1)}{2} + \sum_{ij \in F(K)} z_{ij}
\]

valid for \(P_{CV}(G) \).

If \(|\mathcal{C}| > \chi(G - (F \setminus F(K))) + 1\), it is facet of \(P_{CV}(G) \) \(\iff \)

- \(\nexists w \in V \setminus K \) with \(K \subseteq \Gamma_s(w) \)
- \(1 \leq q_{\Sigma} < |K| < |\mathcal{C}| + q_{\Sigma} \), where \(q_{\Sigma} = \sum_{t \in T} q_t \).

Note that

- Not arising from the Lifting Lemma
- Not a generalization of MKI: the complete graph has no strong edges
In this paper:
- Polyhedral study of the minimum chromatic violation problem
Conclusions and Future Work

In this paper:

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition

To do:

- "Projecting procedure" starting from the k-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?
- Families of graphs for which the MCVP can be polynomial time solvable?
- Separation routine for some of the new valid inequalities?
In this paper:

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets

...
In this paper:

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with weak subgraphs
Conclusions and future work

In this paper:

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with weak subgraphs

To do:

- "Projecting procedure" starting from the k-partition facets?
In this paper:

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with weak subgraphs

To do:

- "Projecting procedure" starting from the k-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?
CONCLUSIONS AND FUTURE WORK

In this paper:

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with weak subgraphs

To do:

- "Projecting procedure" starting from the k-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?
- Families of graphs for which the MCVP can be polynomial time solvable?
CONCLUSIONS AND FUTURE WORK

In this paper:

- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with weak subgraphs

To do:

- "Projecting procedure" starting from the k-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?
- Families of graphs for which the MCVP can be polynomial time solvable?
- Separation routine for some of the new valid inequalities?
In this paper:
- Polyhedral study of the minimum chromatic violation problem
- Analyzed its relationship with the two limit cases: coloring and k-partition
- Developed a lifting procedure for finding new valid inequalities and facets
- Not all of the facets can be obtained in this way: there are some associated with weak subgraphs

To do:
- "Projecting procedure" starting from the k-partition facets?
- Implement Branch-and-cut algorithm for some of the inequalities defining facets?
- Families of graphs for which the MCVP can be polynomial time solvable?
- Separation routine for some of the new valid inequalities?
Thanks for your attention!
Proposition

Let $H \subset V$ odd hole, $T \subset C$. For $|C| > \chi(G - (F \setminus F(H)))$ the multicolor odd hole inequality

$$\sum_{t \in T} \sum_{i \in H} x_{it} \leq |T| \frac{|H| - 1}{2} + \sum_{e \in F(H)} z_e$$

facet of $P_{CV}(G) \iff$

- $|C| > 2$,
- $1 \leq |T| \leq 2$,
- $\nexists w \in V \setminus H$ such that $\Gamma_s(w)$ includes three consecutive vertices from H.