On the Existence of Critical Clique-Helly Graphs

Gabriela Ravenna1
This is a joint work with Liliana Alcón1 and Miguel Pizaña2

1Universidad Nacional de La Plata- CONICET, Argentina
2 Universidad Autónoma Metropolitana, México

LAGOS 2017-Marseille
Motivation: a conjecture of Dourado, Protti and Szwarcfiter
Preliminary definitions
Building a counterexample of the conjecture
Sketch of the proof
Table of contents

1 Motivation: a conjecture of Dourado, Protti and Szwarcfiter

2 Preliminary definitions

3 Building a counterexample of the conjecture

4 Sketch of the proof
Conjecture [Dourado, Protti and Szwarcfiter]

Every clique-Helly graph G (the family of maximal cliques of the graph satisfies the Helly property) contains a vertex v such that $G - v$ is a clique-Helly graph.

A **complete set** of G is a subset of $V(G)$ inducing a complete subgraph. A **clique** is a maximal complete set (with respect to the inclusion relation).
A set family \mathcal{F} satisfies the **Helly property** if the intersection of all the members of any pairwise intersecting subfamily of \mathcal{F} is non-empty. When the cliques family of G, $\mathcal{C}(G)$, satisfies the Helly property, we say that G is a **clique-Helly graph**.
A set family \mathcal{F} satisfies the **Helly property** if the intersection of all the members of any pairwise intersecting subfamily of \mathcal{F} is non-empty. When the cliques family of G, $\mathcal{C}(G)$, satisfies the Helly property, we say that G is a **clique-Helly graph**.
A set family \mathcal{F} satisfies the **Helly property** if the intersection of all the members of any pairwise intersecting subfamily of \mathcal{F} is non-empty. When the cliques family of G, $\mathcal{C}(G)$, satisfies the Helly property, we say that G is a **clique-Helly graph**.
The way we will build a counterexample to the conjecture:

\[\text{Icosahedron} \]

\[\downarrow \]

\[\text{Icosahedron} \times K_3 \quad \text{(tensor product)} \]

\[\downarrow \]

\[K(\text{Icosahedron} \times K_3) \quad \text{(clique graph)} \]
The icosahedron I is one of the platonic graphs.
* Every vertex has degree 5.
* The open neighborhood of each vertex induces a C_5.
The cliques are all triangles.
* Every vertex is in exactly 5 cliques.
The tensor product $I \times K_3$ is the graph with:

- vertices (i, j) where $i \in V(I)$ and $j \in V(K_3)$ and
- two vertices (i, j) and (i', j') adjacent in P if and only if

 i is adjacent to i' in I and
 j is adjacent to j' in K_3.
The tensor product $I \times K_3$

* Every vertex of P has degree 10.
* The open neighborhood of each vertex of P induces a C_{10}.
* The cliques of P are triangles $\{(i, 1), (j, 2), (k, 3)\}$ for any triangle of I.
* Every vertex of P is in exactly ten cliques.
The clique graph $K(I \times K_3)$

- The **clique graph** of $I \times K_3$ is the intersection graph of the cliques family of $I \times K_3$.

It has 120 vertices.....
The clique graph $K(I \times K_3)$

- The **clique graph** of $I \times K_3$ is the intersection graph of the cliques family of $I \times K_3$.

It has 120 vertices.....

A example of clique graph

![Clique Graph Example](image-url)
Main result of this work

Theorem

The graph $G = K(I \times K_3)$ is clique-Helly and for each $v \in G$, $G - v$ is not clique-Helly.

Those graphs satisfying the conditions of the theorem are called critical clique-Helly.
To prove this we will use

Theorem (Larrión, Neumann-Lara, Pizaña)

If the local girth of the graph G is greater than 6 (i.e. $lg(G) \geq 7$) then $K(G)$ is clique-Helly.

The **local girth** of G **at a vertex** $v \in V(G)$ is the length of a shortest chordless cycle of the subgraph induced by the open neighborhood of v in G.
And the **local girth** of G is the minimum of the local girth at all the vertices v.
As we saw in the properties of P the open neighborhood of each vertex induces a C_{10}
$K(I \times K_3) - v$ is not clique-Helly for all $v \in V(K(I \times K_3))$

- Every vertex v of $G = K(I \times K_3)$ represents a clique Q_v of $I \times K_3$, say $Q_v = \{x, y, z\}$.
- Each of these vertices is the center of a 10-wheel.
- Each pair of those wheels have two triangles in common.
- And the total intersection between them is Q_v.
- So, if we remove v of G the corresponding cliques of the wheels are pairwise intersecting with empty total intersection.
The graph \(K(I \times K_3) - v \) is not clique-Helly for all \(v \in V(K(I \times K_3)) \)

- Every vertex \(v \) of \(G = K(I \times K_3) \) represents a clique \(Q_v \) of \(I \times K_3 \), say \(Q_v = \{x, y, z\} \).

- Each of these vertices is the center of a 10-wheel.

- Each pair of those wheels have two triangles in common.

- And the total intersection between them is \(Q_v \).

- So, if we remove \(v \) of \(G \) the corresponding cliques of the wheels are pairwise intersecting with empty total intersection.
$K(I \times K_3) - v$ is not clique-Helly for all $v \in V(K(I \times K_3))$

- Every vertex v of $G = K(I \times K_3)$ represents a clique Q_v of $I \times K_3$, say $Q_v = \{x, y, z\}$.
- Each of these vertices is the center of a 10-wheel.
- Each pair of those wheels have two triangles in common.
- And the total intersection between them is Q_v.
- So, if we remove v of G the corresponding cliques of the wheels are pairwise intersecting with empty total intersection.
\(K(I \times K_3) - v \) is not clique-Helly for all \(v \in V(K(I \times K_3)) \)

- Every vertex \(v \) of \(G = K(I \times K_3) \) represents a clique \(Q_v \) of \(I \times K_3 \), say \(Q_v = \{x, y, z\} \).
- Each of these vertices is the center of a 10-wheel.
- Each pair of those wheels have two triangles in common.
- And the total intersection between them is \(Q_v \).
- So, if we remove \(v \) of \(G \) the corresponding cliques of the wheels are pairwise intersecting with empty total intersection.
$K(I \times K_3) - v$ is not clique-Helly for all $v \in V(K(I \times K_3))$

- Every vertex v of $G = K(I \times K_3)$ represents a clique Q_v of $I \times K_3$, say $Q_v = \{x, y, z\}$.
- Each of these vertices is the center of a 10-wheel.
- Each pair of those wheels have two triangles in common.
- And the total intersection between them is Q_v.
- So, if we remove v of G the corresponding cliques of the wheels are pairwise intersecting with empty total intersection.
Future work

- Show that there is an infinite family of critical clique-Helly graphs.
- Show that there is an infinite family of critical clique-Helly self clique graphs.
Future work

- Show that there is an infinite family of critical clique-Helly graphs.
- Show that there is an infinite family of critical clique-Helly self clique graphs.

Thank you!